

 Navigation

 	
 index

 	
 next |

 	Mandriva Management Console 3.1.1 documentation

Mandriva Management Console documentation

Mandriva Management Console (MMC) is a framework used in Mandriva Directory
Server and Pulse 2 projects that provides plugins for MMC.

If you plan to install MDS plugins or Pulse 2 plugins you
first need to install and configure MMC (see section Core).

Installation and configuration

	Core
	Introduction

	Installation

	MMC configuration

	Audit framework

	Dashboard plugin

	Password policy plugin

	Services plugin

	Configuration files

	Using MMC

	Mandriva Directory Server
	Introduction

	Mail plugin

	Network plugin

	SAMBA plugin

	Shorewall plugin

	Squid plugin

	SSH public keys plugin

	Userquota plugin

	Configuration files

	Pulse 2
	Introduction

	Installation

	Configuration files

Other documentation

	Development
	Contributing to MMC with git

	Writing MMC scripts

	How to write a python module for the MMC agent

	How to write a PHP module for the MMC web interface

	Internationalization and localization

	Style guide for python code

	Style guide for PHP code

	MMC projects release guidelines

	Specifications
	MMC audit framework specification

	QA
	MDS QA

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

Core

	Introduction

	Installation
	Repositories configuration and packages installation

	Installation from source tarball

	LDAP server configuration

	NSS LDAP configuration

	MMC configuration
	Web interface configuration

	MMC agent configuration

	MMC « base » plugin configuration

	About firewalling

	About SE Linux

	Audit framework

	Dashboard plugin
	Installation

	MMC « dashboard » plugin

	MMC « dashboard » plugin configuration

	Password policy plugin
	Installation

	OpenLDAP configuration for password policies

	MMC « ppolicy » plugin configuration

	Password Policy checker module

	Using password policies with SAMBA

	Services plugin
	Installation

	MMC « services » plugin

	MMC « services » plugin configuration

	Configuration files
	MMC agent configuration file

	MMC base plugin configuration file

	MMC ppolicy (Password Policy) plugin configuration file

	MMC web configuration file

	Using MMC
	Controlling mmc-agent

	Administrator login to the MMC web interface

	MMC agent and Python plugins inter-dependencies

	How to disable a plugin

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Introduction

The MMC (Mandriva Management Console) is made of two parts:

	An agent running on the machine to manage. We call it « MMC agent ».
The agent exports to the network several plugins that allow to manage the
machine. Of course, there can be multiple agents running on the network.
The agent and its plugins are written in Python.

	A web interface, that talks to the agent(s) using XML-RPC.
The interface is written in PHP, and use the scriptaculous and prototype
frameworks to provide an AJAX experience across all major browsers including
Internet Explorer 6.

In this document, we will first explain how to install and configure the MMC
agent and the base plugins, and then how to install the web interface.

The MMC core provides 3 plugins:

	base : a plugin for managing users and groups in LDAP

	ppolicy : a plugin for managing user password policies

	audit : a framework for recording all operations done in the MMC interface

Note

Other plugins are available in the Mandriva Directory Server and Pulse 2 projects.

These installations instructions are generic: this means they should work on
most Linux distributions.

If you have any installation issues, please use the MDS users mailing list [http://mds.mandriva.org/wiki/MailingLists].

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Installation

How to install the MMC (Mandriva Management Console) on a Linux distribution

Repositories configuration and packages installation

Mandriva users are lucky

... because Mandriva RPM packages for the MDS and the MMC are available.

Packages for Mandriva 2010.0, 2010.2, 2011.0 and Cooker are available on Mandriva
official repositories. You will find an official mirror using the Mandriva
mirror finder module [http://api.mandriva.com/mirrors/list.php].

You can also add the repositories with the following command:

urpmi.addmedia --distrib --mirrorlist '$MIRRORLIST'

To install the MMC base packages, just type:

urpmi mmc-agent mmc-web-base python-mmc-base

Debian packages

For Debian Squeeze, add this in your sources.list:

deb http://mds.mandriva.org/pub/mds/debian squeeze main

For Debian Wheezy:

deb http://mds.mandriva.org/pub/mds/debian wheezy main

To install MMC base packages, just type:

apt-get update
apt-get install mmc-agent mmc-web-base python-mmc-base

Other packages

We also provide packages for other distribution trough OpenBuildSystem here :

	MMC core [http://software.opensuse.org/download.html?project=home:eonpatapon:mds&package=mmc-core]

	MDS plugins [http://software.opensuse.org/download.html?project=home:eonpatapon:mds&package=mds]

Note

CentOS DAG repository

For some packages, you will need to add the DAG repository to yum. Create
a file named /etc/yum.repos.d/DAG.repo containing:

DAG Repository for RedHat Enterprise 4 / CentOS 4
[dag]
name=DAG Repository
baseurl = http://apt.sw.be/redhat/el$releasever/en/$basearch/dag
gpgkey=http://dag.wieers.com/packages/RPM-GPG-KEY.dag.txt
gpgcheck=1
enabled=0

Packages naming conventions

Here are the packages naming conventions:

	mmc-agent: the MMC agent package

	python-mmc-PLUGIN: MMC agent plugin

	mmc-web-PLUGIN: web interface plugin

Note

Sample configuration files

All MMC related sample configuration files are available in the
python-mmc-base package, in the directory
/usr/share/doc/python-mmc-base/contrib/ or on our
repository [http://github.com/mandriva-management-console/mmc/tree/master/core/agent/contrib].

You will find there OpenLDAP, SAMBA and Postfix configuration files and also
OpenLDAP schemas.

Installation from source tarball

Note

If you are using packages you can skip this part

Pre-requisites

This python modules are needed for MMC to run :

	python-twisted-web

	python-ldap

	pylibacl

	pyopenssl

	python-gobject

The MMC web interface is written in PHP4. Basically, you just need to install
an Apache 2 server with PHP5 support.

The XML-RPC module of PHP is needed too.

Installation

Get the current tarball at this URL: ftp://mds.mandriva.org/pub/mmc-core/sources/current/

tar xzvf mmc-core-x.y.z.tar.gz
cd mmc-core-x.y.z
./configure --sysconfdir=/etc --localstatedir=/var
make
make install
tar xzvf mds-x.y.z.tar.gz

If you want also MDS modules:

cd mds-x.y.z
./configure --sysconfdir=/etc --localstatedir=/var
make
make install

The default $PREFIX for installation is /usr/local. You can change it
on the ./configure line by adding the option --prefix=/usr for example.

Here are how the files are installed:

	$PREFIX/sbin/mmc-agent: the MMC agent

	$PREFIX/lib/mmc/: helpers for some MMC plugins

	/etc/mmc/: all MMC configuration files. There files are sample files
you will need to edit.

	/etc/init.d/mmc-agent: MMC agent init script

	$PREFIX/lib/pythonX.Y/site-packages/mmc: MMC Python libraries and
plugins.

	$PREFIX/lib/pythonX.Y/site-packages/mmc/plugins/: MMC Python plugins

	$PREFIX/share/mmc/: all MMC web interface related files
(PHP, images, ...l)

	$PREFIX/share/mmc/modules/: MMC web interface plugins

	/etc/mmc/mmc.ini: MMC web configuration file

LDAP server configuration

MMC currently supports OpenLDAP.

One LDAP schema called MMC schema is mandatory.
This schema and others are available in the
/usr/share/doc/mmc/contrib/base/ directory provided by
the python-mmc-base package.

Mandriva

The OpenLDAP configuration can be easily done using the openldap-mandriva-dit-package.

urpmi openldap-mandriva-dit
...
/usr/share/openldap/scripts/mandriva-dit-setup.sh
Please enter your DNS domain name [localdomain]:
mandriva.com
Administrator account
The administrator account for this directory is
uid=LDAP Admin,ou=System Accounts,dc=mandriva,dc=com
Please choose a password for this account:
New password: [type password]
Re-enter new password: [type password]
Summary
=======
Domain: mandriva.com
LDAP suffix: dc=mandriva,dc=com
Administrator: uid=LDAP Admin,ou=System Accounts,dc=mandriva,dc=com
Confirm? (Y/n)
Y
config file testing succeeded
Stopping ldap service
Finished, starting ldap service
Running /usr/bin/db_recover on /var/lib/ldap
remove /var/lib/ldap/alock
Starting slapd (ldap + ldaps): [OK]

And you’re done, the LDAP directory has been populated and the LDAP service
has been started.

Some tweaks needs to be done to the LDAP configuration so that the LDAP service
suits to the MDS.

First, copy the MMC LDAP schema you need to the LDAP schemas directory.

cp /usr/share/doc/mmc/contrib/base/mmc.schema /etc/openldap/schema/

Then, add these line to the file /etc/openldap/schema/local.schema:

include /etc/openldap/schema/mmc.schema

Then, to avoid LDAP schemas conflicts, comment or remove these lines at the
beginning of the file /etc/openldap/slapd.conf:

#include /usr/share/openldap/schema/misc.schema
#include /usr/share/openldap/schema/kolab.schema
#include /usr/share/openldap/schema/dnszone.schema
#include /usr/share/openldap/schema/dhcp.schema

Last, comment or remove these lines at the end of the file
/etc/openldap/mandriva-dit-access.conf:

#access to dn.one="ou=People,dc=mandriva,dc=com"
attrs=@inetLocalMailRecipient,mail
by group.exact="cn=MTA Admins,ou=System Groups,dc=mandriva,dc=com" write
by * read

To check that the LDAP service configuration is right, run slaptest:

slaptest
config file testing succeeded

Now you can restart the LDAP service:

service ldap restart
Checking config file /etc/openldap/slapd.conf: [OK]
Stopping slapd: [OK]
Starting slapd (ldap + ldaps): [OK]

Debian

When installing the slapd package, debconf allows you to configure
the root DN of your LDAP directory, set the LDAP manager password
and populate the directory. By default debconf will not ask you to
configure the root DN, you can run dpkg-reconfigure for this.
If you choose “mandriva.com” as your domain, the LDAP DN suffix
will be “dc=mandriva,dc=com”.

dpkg-reconfigure slapd

After that you only need to include the mmc.schema in slapd
configuration and you are done.

Note

Debian Squeeze and later

Debian’s OpenLDAP uses its own database for storing
its configuration. So there is no more slapd.conf.
You can use the mmc-add-schema script to load new schema in
the OpenLDAP configuration database:

mmc-add-schema /usr/share/doc/mmc/contrib/base/mmc.schema /etc/ldap/schema/
Adding schema for inclusion: mmc... ok

You can also write a regular slapd.conf file like before, and issue
the followind commands to convert the file in the new format:

/etc/init.d/slapd stop
rm -rf /etc/ldap/slapd.d/*
slaptest -f /path/to/slapd.conf -F /etc/ldap/slapd.d
chown -R openldap.openldap /etc/ldap/slapd.d
/etc/init.d/slapd start

Other distributions

Note

OpenLDAP example configuration

You will find an example of OpenLDAP configuration in the directory
agent/contrib/ldap/ of the mmc-core tarball.

Note

Already existing directory

If you already have an OpenLDAP directory, all you need to do
is to include the mmc.schema file.

Get the file mmc.schema from the
/usr/share/doc/mmc/contrib/base
directory, and copy it to /etc/openldap/schema/
(or maybe /etc/ldap/schema/).

Include this schema in the OpenLDAP configuration, in
/etc/ldap/slapd.conf
(or maybe /etc/openldap/slapd.conf):

include /etc/openldap/schema/mmc.schema

This schema must be included after the
inetorgperson.schema file.

In the OpenLDAP configuration file, we also define the LDAP DN
suffix, the LDAP manager (rootdn) and its password (rootpw):

suffix "dc=mandriva,dc=com"
rootdn "cn=admin,dc=mandriva,dc=com"
rootpw {SSHA}gqNR92aL44vUg8aoQ9wcZYzvUxMqU6/8

The SSHA password is computed using the slappasswd command:

slappasswd -s secret
{SSHA}gqNR92aL44vUg8aoQ9wcZYzvUxMqU6/8

Once the OpenLDAP server is configured, the base LDAP directory
architecture must be created. Create a file called
/tmp/ldap-init.ldif containing:

dn: dc=mandriva,dc=com
objectClass: top
objectClass: dcObject
objectClass: organization
dc: mandriva
o: mandriva
dn: cn=admin,dc=mandriva,dc=com
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP Administrator
userPassword: gqNR92aL44vUg8aoQ9wcZYzvUxMqU6/8

The userPassword field must be filled with the output of the
slappasswd command. Now we inject the LDIF file into the directory:

/etc/init.d/ldap stop
slapadd -l /tmp/ldap-init.ldif
chown -R ldap.ldap /var/lib/ldap (use the openldap user for your distribution)
/etc/init.d/ldap start

Note

LDAP suffix

In this example, the LDAP suffix is dc=mandriva,dc=com. Of course, you can
choose another suffix.

Note

Changing the OpenLDAP manager password

You can’t change this password using the MMC interface. You must use this
command line:

$ ldappasswd -s NewPassword -D "cn=admin,dc=mandriva,dc=com" -w OldPassword -x cn=admin,dc=mandriva,dc=com

NSS LDAP configuration

To use LDAP users and groups, the OS needs to know where to look in LDAP.

To do this, /etc/nsswitch.conf and /etc/ldap.conf
(/etc/libnss-ldap.conf for Debian based distros) should be configured.

Note

On Debian install the package libnss-ldap

Your /etc/nsswitch.conf should look like this:

passwd: files ldap
shadow: files ldap
group: files ldap
hosts: files dns
bootparams: files
ethers: files
netmasks: files
networks: files
protocols: files
rpc: files
services: files
netgroup: files
publickey: files
automount: files
aliases: files

Your /etc/ldap.conf:

Note

On Debian wheezy the configuration is located in

/etc/libnss-ldap.conf

host 127.0.0.1
base dc=mandriva,dc=com

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

MMC configuration

Web interface configuration

For a full documentation of the /etc/mmc/mmc.ini file see
MMC web configuration file.

What you may change in this file is:

	«login »and «password »: these are the credentials to connect to the MMC
agents on your network (the same credentials as in
/etc/mmc/agent/config.ini)

	«url »option of the [server_x]: the URL to connect to the MMC agent.

To connect to the MMC web interface using an URL like http://IP/mmc, we add
an alias to Apache 2:

cp /etc/mmc/apache/mmc.conf /etc/httpd/conf.d/mmc.conf

or on Debian:

cp /etc/mmc/apache/mmc.conf /etc/apache2/conf.d/mmc.conf

Then don’t forget to reload the Apache service.

Now you should be able to see the MMC login screen at this URL: http://IP/mmc

Note

PHP configuration notes

The directive magic_quotes_gpc must be enabled in Apache PHP configuration,
either in the global PHP configuration file, either in the mmc.conf
file with this line:

php_flag magic_quotes_gpc on

The MMC web interface is not compatible with php-eaccelerator. Please
uninstall it else you won’t be able to connect to the MMC.

MMC agent configuration

For a full description of the MMC agent configuration file see MMC agent configuration file.

With the default configuration file we provide (/etc/mmc/agent/config.ini),
the MMC agent listen locally to incoming XMLRPC over HTTPS connections on port
7080.

MMC « base » plugin configuration

For a full description of the MMC base plugin configuration file see
MMC base plugin configuration file.

The main part of the configuration (/etc/mmc/plugins/base.ini) is to
set the LDAP server to connect to, and the credentials to use to write into
the LDAP. Check the following options:

	ldapurl : usually ldap://127.0.0.1:389

	baseDN : the rootdn of your LDAP directory

	baseUsersDN : DN to the ou containing LDAP users (eg: ou=People, %(baseDN))

	baseGroupsDN : DN to the ou containing LDAP groups (eg: ou=Group, %(baseDN))

	rootName : DN of the LDAP administrator

	password : password of the LDAP administrator

The defaultUserGroup option must be set to an existing group in the LDAP.
You will have to create it using the MMC web interface if this group does not
exist.

You need to create the directory specified in the destpath option.

About firewalling

The MMC web interface communicate with the MMC agent using the TCP port 7080
on localhost (default configuration). Please check that your firewall
configuration doesn’t block this port.

About SE Linux

The MMC web interface opens a socket to communicate with the MMC agent using
XML-RPC.

On SE Linux enabled systems (e.g. Fedora Core 6), by default Apache can’t open
socket per policy. So you need to fix or disable your SE linux configuration
to make it works.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Audit framework

Note

The configuration of the audit framework is optionnal

The MMC audit framework allows to record all users operations
made through the MMC agent, and so the MMC web interface. These
operations are all loggued: LDAP modifications, all filesystem
related modifications, and service management (stop, start, ...)

The Python SQLAlchemy library version 0.5.x/0.6.x is required for the audit
framework. The Python / MySQL bindings are also needed. On Debian install
the following packages:

apt-get install python-mysqldb python-sqlalchemy

The audit framework is configured in the base.ini configuration file,
and is disabled by default. To enable it, uncomment the audit
section. It should look like:

[audit]
method = database
dbhost = 127.0.0.1
port = 3306
dbdriver = mysql
dbuser = audit
dbpassword = audit
dbname = audit

The mmc-helper tool will allow you to create
the dabatase and to populate it with the audit tables easily.

To create the MySQL database:

mmc-helper audit create
-- Execute the following lines into the MySQL client
CREATE DATABASE audit DEFAULT CHARSET utf8;
GRANT ALL PRIVILEGES ON audit.* TO 'audit'@localhost IDENTIFIED BY
'audit';
FLUSH PRIVILEGES;

Just execute the printed SQL statement in a MySQL client and the
database will be created. Note that the base.ini is read to set the
audit database name, user and password in the SQL statements.

On most Linux distribution, the “root” user has administrative
access to the local MySQL server. So this one liner will often be enough:

mmc-helper audit create | mysql

Once created, the audit database tables must be initialized with this command:

mmc-helper audit init
INFO:root:Creating audit tables as requested
INFO:root:Using database schema version 2
INFO:root:Done

At the next start, the MMC agent will connect to the audit database and record
operations.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Dashboard plugin

Note

The configuration of the dashboard plugin is optionnal

Installation

Install the packages python-mmc-dashboard and mmc-web-dashboard.
Restart the mmc-agent service.

MMC « dashboard » plugin

The dashboard plugin will replace the legacy MMC-CORE home page with
a page that can display panels from different MMC plugins.

Every MMC plugin can register its panels to the dashboard.

Example of the the MBS SOHO dashboard:

[image: ../../_images/dashboard.png]

MMC « dashboard » plugin configuration

Like every MMC plugin the configuration can be found in
/etc/mmc/plugins/dashboard.ini

The disabled_panels option can contain a list of panels that will be
disabled. For example, to disable the shortcut and general panel:

disabled_panels = shortcut general

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Password policy plugin

Note

The configuration of the ppolicy plugin is optionnal

Installation

Install the packages python-mmc-ppolicy and mmc-web-ppolicy.

OpenLDAP configuration for password policies

On Mandriva, if you used the mandriva-dit setup scripts, the
password policy configuration is already done. If not, here are
some instructions:

You must add this to your OpenLDAP slapd.conf configuration file:

Include password policy schema
include /path/to/openldap/schema/ppolicy.schema
...
Load the ppolicy module
moduleload ppolicy
...
Add the overlay ppolicy to your OpenLDAP database
database bdb
suffix "dc=mandriva,dc=com"
...
overlay ppolicy
ppolicy_default "cn=default,ou=Password Policies,dc=mandriva,dc=com"

Beware that the ppolicy_default value must match the options “ppolicyDN” and
“ppolicyDefault” you set into the ppolicy.ini file.

MMC « ppolicy » plugin configuration

For a full description of the MMC ppolicy plugin configuration file see
MMC ppolicy (Password Policy) plugin configuration file.

The only thing you’ll have to modify in the configuration file
is the “ppolicyDN” option if needed. The OU parent must be an existing
DN. If the OU or the default password policy object doesn’t
exist, the MMC agent will create them when it starts.

Password Policy checker module

This module has only been built and tested on Mandriva and Debian. It is
installed as /usr/lib/openldap/mmc-check-password.so.

If password quality checking is enabled on the password
policy, OpenLDAP calls this module to check password quality
when a user password is changed using the LDAP Password Modify
Extended operation. MDS will change user passwords with this
operation if you set “passwordscheme = passmod” in
the base.ini configuration file.

To check a password, mmc-check-password.so will launch the
command /usr/bin/mmc-password-helper. The password will pass
the quality checks if it contains at least one number, one upper case
character, one lower case character and one special character (like #, $, etc.).
The password must not contains the same character twice. If python-cracklib
is available, a cracklib check is also done.

The mmc-password-helper tool

This tool allows to check a password from the command line.
For example:

% echo foo | mmc-password-helper -c
% echo $?
1
Exit code is set to 1 if the password fails quality checks, else 0
Use -v for more
echo foo | mmc-password-helper -c -v
the password must be 8 or longer
% echo $?
1

The tool also generates good passwords:

% mmc-password-helper -n
1NjY0MD:
Use -l to change the length (default is 8)
% mmc-password-helper -n -l 12
2ND=3OTcwMjY
% mmc-password-helper -n | mmc-password-helper -c
% echo $?
0
Generated password will always succeed quality checks :)

Using password policies with SAMBA

If the SAMBA module is installed you can benefit of the LDAP password policies
when a user changes his password from any Windows machine in the domain or via
the MMC web interface.

Since SAMBA can’t handle multiple password policies the MMC won’t set any SAMBA
password policies in the SAMBA domain ldap entry. But when SAMBA will try to
change the user password in the LDAP, standard LDAP password policies applies.

The OpenLDAP password policies applies when the user password is changed with
the “passmod” LDAP operation and when the user running the “passmod” is not the
OpenLDAP rootdn.

If the MMC is binded to OpenLDAP with the rootdn as the administrator you will
be able to change passwords from the MMC interface without any password policy
checks. However, password poclicy is applied on the “change user password page”
for normal users.

Note

Password synchronization

Usually the password synchronisation between the SAMBA password and
the LDAP password is done by SAMBA itself. When a user changes his password
SAMBA updates the sambaNTPassword attribute and run the “passmod” LDAP operation
to change the userPassword attribute. This synchronization is done when
ldap sync password = yes is set in SAMBA configuration.
The problem with this method is that if the password does not pass the password
policy check, the SAMBA password will be updated (as it is not changed by a
“passmod” operation) but the userPassword attribute won’t.

The second method to synchronize the password is to set ldap sync password = only
in SAMBA configuration. In this case, SAMBA will only run the “passmod” LDAP operation
when the user changes his password and won’t update the sambaNTPassword attribute of the user.
To update this attribute the OpenLDAP overlay smbk5pwd must be used. This overlay will
intercept “passmod” operations and update the SAMBA password automatically only if
the userPassword attribute has been updated successfully.

In conclusion, in order to use LDAP password policies with SAMBA you have to
make sure that:

	SAMBA is not binded to OpenLDAP with the rootdn

	The password scheme option is set to “passmod” in
/etc/mmc/plugins/base.ini

	Prefer using the ldap sync password = only method with the smbk5pwd
overlay to make sure that passwords are always in sync (Shares ->
General options -> Expert mode -> LDAP password sync)

The configuration of the smbk5pwd overlay is pretty forward. In your slapd.conf
just add :

moduleload smbk5pwd
[...]
overlay smbk5pwd
smbk5pwd-enable samba
overlay ppolicy
ppolicy_default "cn=default,ou=Password Policies,dc=mandriva,dc=com"
[...]

Note

The overlays order is important. Overlays will be called in the
reverse order that they are defined. So ppolicy check must be done before
smbk5pwd synchronization.

SAMBA domain policies

The SAMBA domain policies attributes are synchronized with the default OpenLDAP
password policies by the MMC:

	pwdMinLength -> sambaMinPwdLength

	pwdMaxAge -> sambaMaxPwdAge

	pwdMinAge -> sambaMinPwdAge

	pwdInHistory -> sambaPwdHistoryLength

	pwdMaxFailure -> sambaLockoutThreshold

	pwdLockoutDuration -> sambaLockoutDuration

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Services plugin

Note

The configuration of the services plugin is optionnal

Installation

Install the packages python-mmc-services and mmc-web-services.

Warning

This plugin requires systemd.

If systemd is not available the plugin won’t be loaded.

MMC « services » plugin

This plugin allows the administrator to interact with the system services
installed on the server. The plugin uses systemd DBUS interface to interact
with services.

Currently you can start, stop, restart and reload services. You can also
check any service log from the MMC interface.

MMC « services » plugin configuration

Like every MMC plugin the configuration can be found in
/etc/mmc/plugins/services.ini

The plugin is disabled by default so you need to set disable to 0.

The plugin uses journalctl to display services logs in the interface.
Check that the path to journalctl is correct for your system.

The blacklist option is used to hide any services in the interface. We
don’t display the OpenLDAP service because restarting it from the MMC is not
reliable since the MMC depends on it.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Configuration files

	MMC agent configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section « daemon »

	Sections related to the Python logging module

	How to enable full debug in MMC agent

	MMC base plugin configuration file
	Introduction

	Obfuscated password support in configuration files

	Configuration file sections

	Section « ldap »

	Section « backup-tools »

	Section « audit »

	Section « hooks »

	Section « userdefault »

	User authentication

	User provisioning

	Subscription informations

	MMC ppolicy (Password Policy) plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section « ppolicy »

	Section « ppolicyattributes »

	MMC web configuration file
	Introduction

	Configuration file sections

	Section «global »

	Section « debug »

	Section «logintitle »

	Section « server_x »

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

 	Configuration files

MMC agent configuration file

This document explains the content of the MMC agent configuration file.

Introduction

The MMC agent is a XML-RPC server that exports to the network the API provided
by the MMC python plugins.

Its configuration file is /etc/mmc/agent/config.ini. This file must be
readable only by root, as it contains the login and password required to connect
to the MMC agent.

Like all MMC related configuration file, its file format is INI style. The file
is made of sections, each one starting with a « [sectionname] » header. In each
section options can be defined like this « option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

/etc/mmc/agent/config.ini available sections:

	Section name
	Description
	Optional

	main
	MMC agent main option
	no

	daemon
	MMC agent daemon option
	no

All the other sections (loggers, handlers, ...) are related to Python language
logging framework. See the Python documentation [http://docs.python.org/lib/logging-config-fileformat.html]
for more informations.

Section « main »

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	host
	IP where the MMC agent XML-RPC server listens to incoming connections
	No
	

	port
	TCP/IP port where the MMC agent XML-RPC server listens to incoming connections
	No
	

	login
	login to connect to the MMC agent XML-RPC server
	No
	mmc

	password
	password to connect to the MMC agent XML-RPC server
	No
	s3cr3t

	enablessl
	Enable TLS/SSL for XMLRPC communication. If disabled, the XMLRPC traffic is not encrypted.
	yes
	0

	verifypeer
	If SSL is enabled and verifypeer is enabled, the XML-RPC client that connects to the MMC agent XML-RPC server must provide a valid certificate, else the connection will be closed.
	yes
	0

	localcert
	If verifypeer = 1, the file should contain the private key and the public certificate. This option was previously called privkey
	If verifypeer = 1, yes
	

	cacert
	Path to the file (PEM format) containing the public certificate of the Certificate Authority that produced the certificate defined by the localcert option. If verifypeer = 1, the certificate provided by the XML-RPC client will be validated by this CA.
	If verifypeer = 1, yes
	

	sessiontimeout
	Session timeout in seconds. When a user authenticates to the MMC agent, a user session in created. This session is destroyed automatically when no call is done before the session timeout is reach.
	Yes
	900

	multithreading
	Multi-threading support. If enabled, each incoming XML-RPC request is processed in a new thread.
	Yes
	1

	maxthreads
	If multi-threading is enabled, this setting defines the size of the pool of threads serving XML-RPC requests.
	Yes
	20

	sessiontimeout
	RPC Session timeout in seconds. If unset default to Twisted hardcoded 900 seconds.
	yes
	900

If host=127.0.0.1, the MMC agent will only listen to local incoming
connections. You can use host=0.0.0.0 to make it listen to all available
network interfaces.

To connect to the MMC agent, the client (for example the MMC web
interface) must do a HTTP Basic authentication, using the configured login
and password.

You must change the login and password in the configuration file,
because if you keep using the default configuration, anybody can connect
to your MMC agent. MMC agent issue a warning if you use the default login
and password.

Section « daemon »

This section defines some MMC agent daemon settings.

Available options for the “daemon” section

	Option name
	Description
	Optional
	Default value

	user
	System user under which the MMC agent service is running
	yes
	root

	group
	System group under which the MMC agent service is running
	yes
	root

	umask
	umask used by the MMC agent when creating files (log files for example)
	yes
	0777

	pidfile
	Path to the file containing the PID of the MMC agent
	No
	

If the MMC agent is configured to run as non-root, it drops its root
privileges to the defined user and group id using the “seteuid” system
call. This is done as soon as the configuration file is read.

Sections related to the Python logging module

See http://docs.python.org/lib/logging-config-fileformat.html.

In the default MMC agent configuration, two handlers are configured:

[handler_hand01]
class=FileHandler
level=INFO
formatter=form01
args=("/var/log/mmc/mmc-agent.log",)

[handler_hand02]
class=StreamHandler
level=DEBUG
args=(sys.stderr,)

The handler hand01 records all logs emitted by the MMC agent (and its
activated plugins) in the file /var/log/mmc/mmc-agent.log.

The handler hand02 is used by the MMC agent only when it starts to display
startup messages, then it is closed.

How to enable full debug in MMC agent

Just set level=DEBUG in hand01 handler (see previous section), and
restart the MMC agent.

All the remote function calls and responses are now recorded in MMC log file.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

 	Configuration files

MMC base plugin configuration file

This document explains the content of the MMC base plugin configuration file.

Introduction

The « base » plugin is the main plugin of the MMC Python API. It
features base operations like LDAP management (users, groups, etc), user
authentication and provisioning.

The plugin configuration file is
/etc/mmc/plugins/base.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a « [sectionname] »
header. In each section options can be defined like this «
option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Obfuscated password support in configuration files

All the passwords contained in MMC-related configuration files can
be obfuscated using a base64 encoding. This is not a security feature, but
at least somebody won’t be able to read accidentally a password.

To obfuscate a password, for example the word “secret”, you can use
the Python interpreter:

$ python -c 'print "secret".encode("base64")'
c2VjcmV0

The base64-encoded password is the word “c2VjcmV0”. Now to use it in
a configuration file:

[section]
password = {base64}c2VjcmV0

The {base64} prefix warns the configuration parser that the
following word is a base64-encoded word, and so needs to be decoded before
being used.

Configuration file sections

Here are all the base.ini available sections:

	Section name
	Description
	Optional

	ldap
	LDAP access definition
	no

	backup-tools
	Backup tools configuration
	no

	audit
	MMC audit framework configuration
	yes

	hooks
	Hooks for scripts that interacts with the MMC
	yes

	userdefault
	Attributes and Objectclass values that are added or deleted when adding a new user into the LDAP
	yes

	authentication
	Defines how a user is authenticated when logging into the MMC web interface. For example, another LDAP server can be use to perform the authentication.
	yes

	provisioning
	User accounts can be created or updated automatically when logging in to the MMC web interface.
	yes

	subscription
	This section is used to declare what has been subscribed, and to give some important information to the end user.
	yes

Section « ldap »

This section defines how the main LDAP is accessed, where are
located the users organization units, etc.

Available options for the “ldap” section

	Option name
	Description
	Optional
	Default value

	host (deprecated by ldapurl)
	IP address or hostname of the LDAP server
	no
	

	ldapurl
	LDAP URL to connect to the LDAP server, for example: ldap://127.0.0.1:389. If ldapurl starts with “ldaps://”, use LDAP over SSL on the LDAPS port. LDAPS is deprecated, and you should use StartTLS. If ldapverifypeer = demand, always use the server hostname instead of its IP address in the LDAP URL. This hostname must match the CN field of the server certificate.
	no
	

	network_timeout
	Network timeout in seconds for LDAP operations. No default timeout set.
	yes
	

	start_tls
	TLS connection parameters when LDAPS is not used. “off”: never use TLS. “start_tls”: use the LDAPv3 StartTLS extended operation (recommended).
	yes
	off

	ldapverifypeer
	If start_tls != off or LDAPS, specify check to perform on server certificate. “never”: don’t ask certificate. “demand”: request certificate. If none or bad certificate provided, stop the connection (recommended).
	yes
	demand

	cacertdir
	Client certicates to use (default are empty) for LDAPS or TLS connections. For example: /etc/ssl/certs
	yes
	

	cacert
	Certificate Authority file. For example: /etc/mmc/certs/demoCA/cacert.pem
	yes
	

	localcert
	Local SSL certificate file. For example: /etc/mmc/certs/client.cert
	yes
	

	localkey
	Local SSL public key. For example: /etc/mmc/certs/client.key
	yes
	

	ciphersuites
	Accepted ciphers from the LDAP server.
	yes
	TLSv1:!NULL

	ldapdebuglevel
	set this to 255 to debug LDAP connection problems. Details of all LDAP operations will be written to stdout
	yes
	0

	baseDN
	LDAP base Distinguished Name (DN)
	no
	

	rootName
	LDAP administrator DN
	no
	

	password
	LDAP administrator password
	no
	

	baseUsersDN
	LDAP organisational unit DN where the users are located
	no
	

	baseGroupsDN
	LDAP organisational unit DN where the groups are located
	no
	

	gpoDN
	LDAP organisational unit DN where the GPO are located
	yes
	ou=System,baseDN

	userHomeAction
	If set to 1, create and delete user directory when creating/deleting one
	no
	

	defaultUserGroup
	When creating an user, set this group as the primary user group
	yes
	

	skelDir
	Use the specified directory when creating a user home directory
	yes
	/etc/skel

	defaultHomeDir
	Use this directory as a base directory when creating a user without specifying a home directory. If the creater user is called “foo”, his/her homeDirectory will be “defaultHomeDir/foo”
	yes
	/home

	defaultShellEnable
	the default shell for enabled users
	no
	/bin/bash

	defaultShellDisable
	the default shell for disabled users
	no
	/bin/false

	authorizedHomeDir
	a list of directory where user home directory can be put
	yes
	defaultHomeDir

	uidStart
	starting uid number for user accounts
	yes
	10000

	gidStart
	starting gid number for groups
	yes
	10000

	logViewModule
	enable/disable the logview module
	yes
	no

	logfile
	LDAP log file path
	no
	

	passwordscheme
	LDAP user password scheme. Possible values are “ssha”, “crypt” and “passmod”. “passmod” uses the LDAP Password Modify Extended Operations to change password. The password encryption is done by the LDAP server.
	no
	passmod

Section « backup-tools »

This section defines where are located the backup tools. The backup
tools are used when backuping a home directory or a SAMBA share from the
MMC.

Available options for the “backup-tools” section:

	Option name
	Description
	Optional

	path
	Where are located the executable needed by the backup tools
	no

	destpath
	Where the backup are located once done
	no

Section « audit »

This section defines the audit framework behaviour. By default the
audit framework is disabled.

Available options for the “audit” section:

	Option name
	Description
	Optional

	method
	Method used to record all audit data. Only the “database” method is supported.
	no

	dbhost
	Host to connect to the SGBD that stores the audit database
	no

	dbdriver
	Database driver to use. “mysql” and “postgres” drivers are supported.
	no

	dbport
	Port to connect to the SGBD that stores the audit database.
	no

	dbuser
	User login to connect to the SGBD that stores the audit database.
	no

	dbpassword
	User password to connect to the SGBD that stores the audit database.
	no

	dbname
	Name of the audit database.
	no

Section « hooks »

The hooks system allow you to run external script when doing some
operations with the MMC.

The script will be run as root user, with as only argument the path
to a temporary file containing the full LDIF export of the LDAP user.

For the « adduser » and « changeuserpassword » hooks, the LDIF file will
contain the userPassword attribute in cleartext.

For the « usertoken » hook the userPassword attribute will contain the
authentication token for the user. This token is valid for 15 minutes. Using
this token a link can be send to the user (email, sms...) so that he can login
in the MMC interface and change his password trough the “Reset password page”.
The link is in the form: http://SERVER/mmc/token.php?token=<TOKEN>.

The executable bit must be set on the script to run. The temporary
LDIF file is removed once the script has been executed.

Available options for the “hooks” section:

	Option name
	Description
	Optional

	adduser
	path to the script launched when a user has been added into the LDAP directory
	yes

	changeuserpassword
	path to the script launched when a user has been changed into the LDAP directory
	yes

	deluser
	path to the script launched when a user is going to be removed from the LDAP directory
	yes

	usertoken
	path to the script launched when an authentication token has been created for a user
	yes

Here is a hook example written in BASH for « adduser »:

#!/bin/sh
Get the uid of the new user
VALUE=`cat $1 | grep ^uid: | sed "s/uid: //"`
Log new user event
echo "New user $VALUE created" >> /var/log/newuser.log
exit 0

The same hook, written in Python:

#!/usr/bin/env python
import sys
ldif is a Python package of the python-ldap extension
import ldif
LOGFILE = "/var/log/newuser.log"

class MyParser(ldif.LDIFParser):

 def handle(self, dn, entry):
 uid = entry["uid"][0]
 f = file(LOGFILE, "a")
 f.write("New user %s created\\n" % uid)
 f.close()

parser = MyParser(file(sys.argv[1]))
parser.parse()

Section « userdefault »

This section allows to set default attributes to a user, or remove
them, only at user creation.

Each option of this section is corresponding to the attribute you
want to act on.

If you want to remove the « displayName » attribute of each newly
added user:

[userdefault]
displayName = DELETE

Substitution is done on the value of an option if a string between
‘%’ is found. For example, if you want that all new user have a default
email address containing their uid:

[userdefault]
mail = %uid%@mandriva.com

If you want to add a value to a multi-valuated LDAP attribute, do
this:

[userdefault]
objectClass = +corporateUser

Since version 1.1.0, you can add modifiers that interact with the
substitution. This modifiers are put between square bracket at the
beginning os the string to substitute.

Available modifiers for substitution

	modifier character
	Description

	/
	Remove diacritics (accents mark) from the substitution string

	_
	Set substitution string to lower case

	|
	Set substitution string to upper case

For example, you want that all new created users have a default mail
address made this way: « firstname.lastname@mandriva.com ». But your user
firstname/lastname have accent marks, that are forbidden for email
address. You do it like this:

[userdefault]
mail = [_/]%givenName%.%sn%@mandriva.com

User authentication

The default configuration authenticates users using the LDAP
directory specified in the [ldap] section.

But it is also possible to set up authentication using an external
LDAP server.

Section « authentication »

This optional section tells the MMC agent authentication manager
how to authenticate a user. Each Python plugin can register
“authenticator” objects to the authentication manager, that then can be
used to authenticate users.

The authentication manager tries each authenticator with the
supplied login and password until one successfully authenticate the
user.

Please note that the user won’t be able to log in to the MMC web
interface if she/he doesn’t have an account in the LDAP directory
configured in the [ldap] section of the base plugin. The provisioning
system will allow you to automatically create this account.

The base plugin registers two authenticators:

	baseldap: this authenticator uses the LDAP directory
configured in the [ldap] section of the base plugin to authenticate
the user,

	externalldap: this authenticator uses an external LDAP
directory to authenticate the user.

Available options for the “authentication” section

	Option name
	Description
	Optional
	Default value

	method
	space-separated list of authenticators to try to authenticate a user
	yes
	baseldap

The default configuration is:

[authentication]
method = baseldap

authentication_baseldap

This section defines some configuration directives for the
baseldap authenticator.

Available options for the “authentication_baseldap” section:

	Option name
	Description
	Optional
	Default value

	authonly
	space-separated list of login that will be authentified using this authenticator. Others will be skipped.
	yes
	

For example, to make the “baseldap” authenticator only
authenticate the virtual MMC “root” user:

[authentication_baseldap]
authonly = root

authentication_externalldap

This section defines some configuration directives for the
baseldap authenticator.

Available options for the “authentication_externalldap” section:

	Option name
	Description
	Optional
	Default value

	exclude
	space-separated list of login that won’t be authenticated using this authenticator.
	yes
	

	authonly
	If set, only the logins from the specified space-separated list of login will be authenticated using this authenticator, other login will be skipped.
	yes
	

	mandatory
	Set whether this authenticator is mandatory. If it is mandatory and can’t be validated during the mmc-agent activation phase, the mmc-agent exits with an error.
	yes
	True

	network_timeout
	LDAP connection timeout in seconds. If the LDAP connection failed after this timeout, we try the next LDAP server in the list or give up if it the last.
	yes
	

	ldapurl
	LDAP URL of the LDAP directory to connect to to authenticate user. You can specify multiple LDAP URLs, separated by spaces. Each LDAP server is tried until one successfully accepts a connection.
	no
	

	suffix
	DN of the LDAP directory where to search users
	no
	

	bindname
	DN of the LDAP directory account that must be used to bind to the LDAP directory and to perform the user search. If empty, an anonymous bind is done.
	no
	

	bindpasswd
	Password of the LDAP directory account given by the bindname option. Not needed if bindname is empty.
	no
	

	filter
	LDAP filter to use to search the user in the LDAP directory
	yes
	objectClass=*

	attr
	Name of the LDAP attribute that will allow to match a user entry with a LDAP search
	no
	

For example, to authenticate a user using an Active
Directory:

[authentication_externalldap]
exclude = root
ldapurl = ldap://192.168.0.1:389
suffix = cn=Users,dc=adroot,dc=com
bindname = cn=Administrator, cn=Users, dc=adroot, dc=com
bindpasswd = s3cr3t
filter = objectClass=*
attr = cn

User provisioning

This feature allows to automatically create a user account if it
does not already exist in the LDAP directory configured in the [ldap]
section of the base plugin.

User provisioning is needed for example if an external LDAP is used
to authenticate users. The users won’t be able to log in to the MMC web
interface even if their login and password are rights, because the local
LDAP doesn’t store thir accounts.

Section « provisioning »

This optional section tells the MMC agent provisioning manager how
to provision a user account. Each Python plugin can register
“provisioner” objects to the provisioning manager, that then can be used
to provision users.

When a user logs in to the MMC web interface, the authenticator
manager authenticates this user. If the authentication succeed, then the
provisioning manager runs each provisioner.

The authenticator object that successfully authenticates the user
must pass to the provisioning manager the user informations, so that the
provisioners have data to create or update the user entry.

Available options for the “provisioning” section

	Option name
	Description
	Optional
	Default value

	method
	space-separated list of provisioners
	yes
	

For example, this configuration tells to use the “externalldap”
provisioner to create the user account:

[provisioning]
method = externalldap

provisioning_external

This section defines some configuration directives for the
externalldap authenticator.

Available options for the “authentication_externalldap” section:

	Option name
	Description
	Optional
	Default value

	exclude
	space-separated list of login that won’t be provisioned by this provisioner.
	yes
	

	ldap_uid
	name of the external LDAP field that is corresponding to the local uid field. The uid LDAP attribute is the user login.
	no
	

	ldap_givenName
	name of the external LDAP field that is corresponding to the local givenName field
	no
	

	ldap_sn
	name of the external LDAP field that is corresponding to the local sn (SurName) field
	no
	

	profile_attr
	The ACLs fields of the user that logs in can be filled according to the value of an attribute from the external LDAP. This option should contain the field name.
	yes
	

	profile_acl_<profilename>
	The ACLs field of the user that logs in with the profile <profilename>.
	yes
	

	profile_group_mapping
	If enabled, users with the same profile will be put in the same users group.
	yes
	False

	profile_group_prefix
	If profile_group_mapping is enabled, the created groups name will be prefixed with the given string.
	yes
	

To create a user account, the MMC agent needs the user’s login,
password, given name and surname. That’s why the ldap_uid`È,
``ldap_givenName and ldap_sn options are mandatory.

Here is a simple example of an authenticators and provisioners
chain that authenticates users using an Active Directory, and create
accounts:

[authentication]
method = baseldap externalldap

[authentication_externalldap]
exclude = root
ldapurl = ldap://192.168.0.1:389
suffix = cn=Users,dc=adroot,dc=com
bindname = cn=Administrator, cn=Users, dc=adroot, dc=com
bindpasswd = s3cr3t
filter = objectClass=*
attr = cn

[provisioning]
method = externalldap

[provisioning_externalldap]
exclude = root
ldap_uid = cn
ldap_givenName = sn
ldap_sn = sn

Subscription informations

This section contains all the information needed when the version is
not a community one. It allow for example to send mail to the
administrator directly from the GUI when something went wrong.

Available options for the “subscription” section:

	Option name
	Description
	Optional
	Default value

	product_name
	A combination of “MDS” and “Pulse 2” to describe the product
	yes
	MDS

	vendor_name
	The vendor’s name
	yes
	Mandriva

	vendor_mail
	The vendor’s email address
	yes
	sales@mandriva.com

	customer_name
	The customer’s name
	yes
	

	customer_mail
	The customer’s email address
	yes
	

	comment
	A comment on the customer
	yes
	

	users
	The number of users included in the subscription. 0 is for infinite.
	yes
	0

	computers
	The number of computers included in the subscription. 0 is for infinite.
	yes
	0

	support_mail
	The support’s email address
	yes
	customer@customercare.mandriva.com

	support_phone
	The support’s phone number
	yes
	0810 LINBOX

	support_comment
	A comment about the support
	yes
	

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

 	Configuration files

MMC ppolicy (Password Policy) plugin configuration file

This document explains the content of the MMC ppolicy
(Password Policy) plugin configuration file

Introduction

The « ppolicy » plugin allows to set the default password
policy to apply to all users contained into the LDAP directory,
and to set a specific password policy to a user.

This plugin is disabled by default. Please be sure to understand
how works password policy for LDAP before enabling it. Here are
some related documentations:

	Internet-Draft:
Password Policy for LDAP Directories [http://tools.ietf.org/html/draft-behera-ldap-password-policy]

	Managing
Password Policies in the Directory [http://www.symas.com/blog/?page_id=66]

The plugin configuration file is /etc/mmc/plugins/ppolicy.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a «
[sectionname] » header. In each section options can be defined
like this « option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the ppolicy.ini available sections:

	Section name
	Description
	Optional

	main
	global ppolicy plugin configuration
	no

	ppolicy
	
	yes

	ppolicyattributes
	
	yes

Section « main »

This sections defines the global options of the mail plugin

	Option name
	Description
	Optional
	Default value

	disable
	Is this plugin disabled ?
	Yes
	1

Section « ppolicy »

This section defines the LDAP location of the password policies.

	Option name
	Description
	Optional
	Default value

	ppolicyDN
	DN of the LDAP OU where the default password policy will be stored
	No
	

	ppolicyDefault
	Name of the default password policy
	No
	

Section « ppolicyattributes »

This section defines the attributes and the values of the
default LDAP password policy. The default policy will be initialized
when the MMC agent starts if the default policy doesn’t exist in
the LDAP directory.

Of course the attribute name must match the LDAP password policy
schema. Here is the default configuration we ship for this section:

This options are used only once to create the default password
policy entry
into the LDAP
[ppolicyattributes]
pwdAttribute = userPassword
pwdLockout = True
pwdMaxFailure = 5
pwdLockoutDuration = 900
Password can be change if it not 7 days old
pwdMinAge = 25200
Password expiration is 42 days
pwdMaxAge = 3628800
pwdMinLength = 8
pwdInHistory = 5
pwdMustChange = True
To check password quality
pwdCheckModule = mmc-check-password.so
pwdCheckQuality = 2

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

 	Configuration files

MMC web configuration file

This document explains the content of the MMC web configuration file

Introduction

The MMC web interface communicates with MMC agents to manage LDAP directories,
services and ressources.

Its configuration file is /etc/mmc/mmc.ini. This file must be readable
only by the Apache web server, as it contains the login and password required
to connect to MMC agents.

Like all MMC related configuration files, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

/etc/mmc/mmc.ini available sections:

	Section name
	Description
	Optional

	global
	MMC web interface global options
	no

	debug
	debug options
	no

	logintitle
	Login page title
	yes

	server_x
	MMC agent XMLRPC server connection options
	no

Section «global »

Available options for the «global » section:

	Option name
	Description
	Optional
	Default value

	backend
	Which RPC backend to use. Only xmlrpc backend is available.
	no
	

	login
	credential to authenticate with the MMC agent
	no
	

	password
	credential to authenticate with the MMC agent
	no
	

	root
	Root URL where the MMC web pages are installed
	no
	

	rootfsmodules
	Filesystem path where the MMC web modules are installed
	no
	

	maxperpage
	Number of items (users, groups, ...) in displayed lists on the web interface
	no
	

	community
	It’s a yes or no flag, it set the fact the installed version is a community one or not
	yes
	yes

Section « debug »

For debugging purpose only. The XML-RPC calls and results will be displayed on
the MMC web interface.

	Option name
	Description
	Optional
	Default value

	level
	Wanted debug level. 0 to disable debug. 1 to enable debug.
	No
	

Section «logintitle »

This section allows to customize the title of the login box of the MMC web
interface login page. By default, there is no title.

A title can be defined for each supported locales, like this:

localename = Title_for_this_locale

The title string must be encoded in UTF-8.

For example:

[logintitle]
; Default page title for English and non-translated languages
C = Welcome
; French title
fr_FR = Bienvenue
; Spanish title
es_ES = Bienvenido

Section « server_x »

You can set multiple sections called « server_01 », «server_02 » ...
to specify a list of MMC agents to connect to.

On the MMC login web page, all the specified MMC agents will be displayed,
and you will be able to select the one you want to be connected to.

Available options for the «server_x »sections:

	Option name
	Description
	Optional
	Default value

	description
	Label to display on the MMC login web page
	no
	

	url
	How to connect the XMLRPC server of this MMC agent
	no
	

	forgotPassword
	Show a “forgot password” link on the login page (See the usertoken hook in the base module configuration)
	yes
	no

	timeout
	Timeout in seconds for all socket I/O operations. Beware that timeout on a SSL socket only works with PHP >= 5.2.1.
	yes
	300

	verifypeer
	If verifypeer is enabled, the TLS protocol is used, and the XML-RPC server must provide a valid certificate.
	yes
	0

	localcert
	If verifypeer = 1, path to the file (PEM format) containing the private key and the public certificate used to authenticate with the MMC agent
	no if verifypeer = 1
	

	cacert
	Path to the file (PEM format) containing the public certificate of the Certificate Authority that produced the certificate defined by the localcert option. The certificate provided by the MMC agent will be validated by this CA.
	no if verifypeer = 1
	

For example, to define a local MMC agent:

[server_01]
description = Local MMC agent
url = http://127.0.0.1:7080

To use SSL between the web interface and the MMC agent (SSL must be enabled on
the MMC agent):

[server_01]
description = Local MMC agent
url = https://127.0.0.1:7080

To use TLS with certificate check:

[server_01]
description = MMC agent
url = https://10.0.0.1:7080
verifypeer = 1
cacert = /etc/mmc/certs/demoCA/cacert.pem
localcert = /etc/mmc/certs/client.pem

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Core

Using MMC

Controlling mmc-agent

To start and stop the MMC agent, use the /etc/init.d/mmc-agent script:

/etc/init.d/mmc-agent stop
/etc/init.d/mmc-agent start

The MMC agent must be started to use the MMC web interface.

When the MMC agent is started, all startup log messages are written to stderr
and /var/log/mmc/mmc-agent.log.

Here is what is written (for example) if there is no error:

/etc/init.d/mmc-agent start
Starting Mandriva Management Console XML-RPC Agent: mmc-agent starting...
Plugin base loaded, API version: 4:0:0 build(82)
Plugin mail loaded, API version: 3:0:1 build(78)
Plugin samba loaded, API version: 3:0:2 build(78)
Plugin proxy loaded, API version: 1:0:0 build(78)
Daemon PID 13943
done.

If there is an error:

/etc/init.d/mmc-agent start
Starting Mandriva Management Console XML-RPC Agent: mmc-agent starting...
Can't bind to LDAP: invalid credentials.
Plugin base not loaded.
MMC agent can't run without the base plugin. Exiting.
failed.

The base plugin can’t bind to LDAP, because the credentials we used to connect
to the LDAP server are wrong. As the base plugin must be activated to use the
MMC agent, the MMC agent exits.

/etc/init.d/mmc-agent start
Starting Mandriva Management Console XML-RPC Agent: mmc-agent starting...
Plugin base loaded, API version: 4:0:0 build(82)
Plugin mail loaded, API version: 3:0:1 build(78)
Samba schema are not included in LDAP directory
Plugin samba not loaded.
Plugin proxy loaded, API version: 1:0:0 build(78)
Daemon PID 14010
done.

In this example, the SAMBA schema has not been detected in the LDAP directory,
so the SAMBA plugin is not started. But this plugin is not mandatory,
so the MMC agent doesn’t exit.

Administrator login to the MMC web interface

You can always login to the MMC web interface using the login «root » with the
LDAP administrator password.

After you installed the MMC, this is the only user you can use to log in,
because the LDAP directory entry is empty.

MMC agent and Python plugins inter-dependencies

When the MMC agent starts, it looks for all the installed plugins, and tries to activate them.
Each plugin has a self-test function to check if it can be activated or not. For example, if the «base »plugin can’t contact the LDAP, it won’t be activated. It the SAMBA schema is not available in the LDAP, the «samba »plugin won’t start.

The MMC agent always tries to enable the plugin «base »first. The MMC agent won’t start if the plugin «base » can’t be activated.

A MMC web module won’t show in the web interface if the corresponding Python plugin is not loaded by the contacted MMC agent.

For example, you installed the SAMBA web module, but the SAMBA Python plugin of the MMC agent the web interface is connected to has not been activated.
This will be detected and automatically the SAMBA management module of the web interface won’t be displayed.

How to disable a plugin

In the .ini file corresponding to the plugin (in /etc/mmc/plugins/) ,
set «disable = 1 » in the main section.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

Mandriva Directory Server

	Introduction

	Mail plugin
	Installation

	LDAP directory configuration

	Postfix/LDAP configuration

	NSS LDAP configuration

	MMC «mail »plugin configuration

	Network plugin
	Introduction

	Installation

	Debian packages for patched versions of BIND

	DNS service configuration (ISC BIND)

	DHCP service configuration (ISC DHCP)

	LDAP Schemas

	MMC « network » plugin configuration

	MMC « network » plugin initialization

	DHCP failover configuration

	SAMBA plugin
	Installation

	SAMBA configuration for MMC

	About SE Linux

	MMC « base » plugin configuration

	MMC « SAMBA » plugin configuration

	Shorewall plugin
	Installation

	MMC « shorewall » plugin

	MMC «shorewall »plugin configuration

	Shorewall configuration

	Squid plugin
	Installation

	LDAP directory configuration

	Squid configuration

	SSH public keys plugin
	Installation

	LDAP directory configuration

	MMC «sshlpk »plugin configuration

	Userquota plugin
	Installation

	LDAP directory configuration

	Enabling filesystem quotas on your server

	MMC «userquota »plugin configuration

	Configuration files
	MMC mail plugin configuration file

	MMC network plugin configuration file

	MMC SAMBA plugin configuration file

	MMC squid plugin configuration file

	MMC sshlpk plugin configuration file

	MMC userquota plugin configuration file

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

Introduction

The Mandriva Directory Server (MDS) provides different modules running on
top of the Mandriva Management Console.

MDS is composed of the following plugins:

	samba: The «samba » plugin allows the MMC to add/remove SAMBA attributes
to users and groups, to manage SAMBA share, etc.

	network: The « network » plugin allows the MMC Python API to manage DNS
zones and hosts, DHCP subnet and hosts, into a LDAP. Patched version of ISC
BIND (with LDAP sdb backend) and ISC DHCP (with LDAP configuration file backend)
are needed. PowerDNS support is also available.

	mail: The «mail » plugin allows the MMC to add/remove mail delivery
management attributes to users and groups, and mail virtual domains, mail
aliases, etc. Zarafa support is also available.

	sshlpk: The «sshlpk » plugin allows the MMC to manage lists of SSH
public keys on users.

	userquota: The «userquota » plugin allows the MMC to set filesystem quotas
to users. The plugin provides LDAP attributes for storing quota information.
The plugin allows also to store network quotas in the LDAP directory for
external tools.

	shorewall: The « shorewall » plugin provides an interface to configure
shorewall rules and policies from the MMC. Shorewall is wrapper around
iptables [1].

Before installing MDS plugins, you have to install the Mandriva Management
Console (see Installation).

	[1]	http://shorewall.net/

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

Mail plugin

Installation

Install the packages python-mmc-mail and mmc-web-mail.

LDAP directory configuration

You need to import our mail schema into the LDAP directory.
The schema file is provided by the python-mmc-base package in
/usr/share/doc/mmc/contrib/mail/mail.schema.

Once this schema is imported, you will be able to manage mail delivery
attributes thanks to the MMC.

Note

To include the schema on Debian:

mmc-add-schema /usr/share/doc/mmc/contrib/mail/mail.schema
/etc/ldap/schema/

Postfix/LDAP configuration

Example Postfix configuration files are included into the mds tarball and
packages in /usr/share/doc/mmc/contrib/mail/postfix/.

We provide two kinds of configuration:

	no-virtual-domain: the mail domain is fixed in the «mydestination »option
in main.cf (you can’t manage mail domains in the MMC - default mode)

	with-virtual-domains: mails are delivered to all mail domains created thanks
to the MMC (you can add/remove mail domains from the MMC)

Copy all configuration files in /etc/postfix and replace LDAP configuration
values and domain name with your settings. In all ldap-*.cf files fix the
search_base option. In main.cf fix the domain name in myhostname and
mydestination.

NSS LDAP configuration

NSS LDAP configuration is needed to deliver mails with the right UIDs/GIDs.

See NSS LDAP configuration.

MMC «mail »plugin configuration

For a full description of the MMC mail plugin configuration file see
MMC mail plugin configuration file.

This plugin won’t be activated if your LDAP directory does not include a
special mail schema.

To enable virtual domains set vDomainSupport to 1.
To enable virtual aliases set vAliasesSupport to 1.
To enable Zarafa support set zarafa to 1.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

Network plugin

Introduction

This plugin allows to store in a LDAP directory:

	DNS zones declarations and related DNS records as needed for a standard LAN;

	DHCP server configuration with DHCP subnet, dynamic pool and static host
declarations.

The MMC web interface allows to easily manage the DNS and DHCP services.

The network plugin relies on patched version of ISC DHCP 3 and ISC BIND 9:

	ISC BIND: a patch featuring a LDAP sdb backend must be applied to your BIND
installation. With this patch BIND will be able to read DNS zone declarations
from a LDAP directory. This patch is available there [http://www.venaas.no/ldap/bind-sdb/].
The stable release of this patch (version 1.0) works fine.

	ISC DHCP: the patch on this page [http://home.ntelos.net/~masneyb/] allows
to store into a LDAP the DHCP service configuration (instead of /etc/dhcp3/dhcpd.conf).

Installation

Install the packages python-mmc-network and mmc-web-network.

Debian packages for patched versions of BIND

We provide Debian Lenny packages for the LDAP patched version of BIND.
This packages work on Squeeze too.

Configure your APT repository as in the Debian packages section.
And add in /etc/apt/preferences.d/pining :

Package: *
Pin: origin mds.mandriva.org
Pin-Priority: 1001

Then install the packages :

apt-get update
apt-get install bind9 isc-dhcp-server-ldap

DNS service configuration (ISC BIND)

When managing the DNS zones, the MMC agent will create files into the BIND
configuration directory (located in /etc/bind/). These files must be
included in the main BIND configuration file so that the corresponding zones
are loaded from the LDAP directory.

All the DNS zones are defined in the file named.conf.ldap. This file
must be included in the main BIND configuration file named.conf.
Adding this line at the end of BIND named.conf should be sufficient:

include "/etc/bind/named.conf.ldap";

An example of named.conf filename for Debian based system is available
at /usr/share/doc/mmc/contrib/network/named.conf.

Note

BIND and OpenLDAP services startup order

On most distributions, BIND is started before OpenLDAP during the boot
sequence. If BIND/LDAP is used, BIND won’t be able to connect to the LDAP
directory, and won’t start. So you may need to tweak your system boot scripts
to fix this. The following command line should work on Debian based systems:

update-rc.d -f slapd remove && update-rc.d slapd start 14 2 3 4 5 . stop 86 0 1 6 .

DHCP service configuration (ISC DHCP)

The DHCP server needs to know how to load its configuration from LDAP.
Here is a typical /etc/dhcp/dhcpd.conf:

ldap-server "localhost";
ldap-port 389;
ldap-username "cn=admin, dc=mandriva, dc=com";
ldap-password "secret";
ldap-base-dn "dc=mandriva, dc=com";
ldap-method dynamic;
ldap-debug-file "/var/log/dhcp-ldap-startup.log";

The dhcpd service will try to find an LDAP entry for the machine hostname. If the entry name is different, you can set in dhcpd.conf:

ldap-dhcp-server-cn "DHCP_SERVER_NAME";

An example of dhcpd.conf filename is available in the directory /usr/share/doc/mmc/contrib/network/.

LDAP Schemas

Two new LDAP schemas must be imported into your LDAP directory: dnszone.schema and dhcp.schema.

Both are available in the directory /usr/share/doc/mmc/contrib/network/.

To speed up LDAP search, you can index these attributes: zoneName, relativeDomainName, dhcpHWAddress, dhcpClassData.

For OpenLDAP slapd.conf configuration file, you will add:

index zoneName,relativeDomainName eq
index dhcpHWAddress,dhcpClassData eq

MMC « network » plugin configuration

For a full description of the MMC network plugin configuration file see
MMC network plugin configuration file.

You should verify that the paths to directories and init scripts are right.

MMC « network » plugin initialization

For the DHCP service only, the MMC network plugin needs to create into the LDAP directory two objects:

	the container called “DHCP config” (objectClass dhcpService), where all the DHCP service configuration will be stored

	the primary server (objectClass dhcpServer) that links to the DHCP service configuration.
The hostname of the machine running the MMC network plugin will be use to name this entry.

The first start of the MMC network plugin should look like:

...
Created OU ou=DHCP,dc=mandriva,dc=com
Created DHCP config object
The server 'your_server_hostname' has been set as the primary DHCP server
Plugin network loaded ...
...

DHCP failover configuration

The DHCP failover can be done directly from the MMC interface on the page
“Network -> Network services management”.

The primary DHCP server name is by default the hostname of the server where
the mmc-agent is running. You can override this by setting the “hostname” option in
/etc/mmc/plugins/network.ini

To configure DHCP failover you need at least the name of your secondary DHCP server
and the IP addresses of the two DHCP servers. In expert mode you can set any parameter of
the failover configuration.

The secondary ISC dhcpd configuration is almost the same as the primary DHCP:

ldap-server "LDAP_SERVER_IP";
ldap-port 389;
ldap-username "cn=admin, dc=mandriva, dc=com";
ldap-password "secret";
ldap-base-dn "dc=mandriva, dc=com";
ldap-dhcp-server-cn "SECONDARY_DHCP_SERVER_NAME";
ldap-method dynamic;
ldap-debug-file "/var/log/dhcp-ldap-startup.log";

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

SAMBA plugin

This document explains how to install the SAMBA plugin for MMC and its
related configuration.

Installation

Install the packages python-mmc-samba, mmc-web-samba and samba.

SAMBA configuration for MMC

This section explains how to configure SAMBA with a LDAP directory so that it
works with the MMC. Basically, you need to do a classic SAMBA/LDAP setup,
SAMBA running as a PDC.

Note

Configuration files

A slapd.conf for OpenLDAP and a smb.conf for SAMBA can
be found in /usr/share/doc/mmc/contrib/samba.

Please use these files as templates for your own configuration.

If you aren’t familiar with SAMBA/LDAP installation, read the
SAMBA LDAP HOWTO [http://download.gna.org/smbldap-tools/docs/samba-ldap-howto/index.html].
SAMBA LDAP setup is not easy.

LDAP directory configuration

You need to import the SAMBA schema into the LDAP directory.
The schema file is provided by the python-mmc-samba package in
/usr/share/doc/mmc/contrib/samba/samba.schema. But you can
also use the schema provided by the SAMBA project.

SAMBA configuration

Stop samba before modifying its configuration:

/etc/init.d/samba stop
Or according to your distribution:
/etc/init.d/smb stop

In /etc/samba/smb.conf, you need to modify the «workgroup »,
«ldap admin dn » and «ldap suffix »to suit your configuration.

SAMBA also needs the credentials of the LDAP manager to write into the LDAP:

smbpasswd -w secret
Setting stored password for "cn=admin,dc=mandriva,dc=com" in secrets.tdb

Now, SAMBA needs to create the SID for your workgroup:

net getlocalsid MANDRIVA
SID for domain MANDRIVA is: S-1-5-21-128599351-419866736-2079179792

Use slapcat to check that the SID has really been recorded into the LDAP. You should find an entry like this:

slapcat | grep sambaDomainName
dn: sambaDomainName=MANDRIVA,dc=mandriva,dc=com
...

Now you can start SAMBA:

/etc/init.d/samba start

Populating the LDAP directory for SAMBA

The LDAP directory needs to be populated so that SAMBA can use it. We use the
smbldap-populate command from the smbldap-tools package. This
command populates the LDAP with the OUs (Organizational Unit), users and groups
needed by SAMBA.

Note

On Debian do first:

cp /usr/share/doc/smbldap-tools/examples/smbldap_bind.conf
/etc/smbldap-tools/
cp /usr/share/doc/smbldap-tools/examples/smbldap.conf.gz
/etc/smbldap-tools/
gunzip /etc/smbldap-tools/smbldap.conf.gz

Now the smbldap-tools conf file need to be edited. Put this in
/etc/smbldap-tools/smbldap_bind.conf:

slaveDN="cn=admin,dc=mandriva,dc=com"
slavePw="secret"
masterDN="cn=admin,dc=mandriva,dc=com"
masterPw="secret"

smbldap_bind.conf defines how to connect to and write to the LDAP server.

Then edit smbldap.conf and set those fields:

SID="S-1-5-21-128599351-419866736-2079179792"
sambaDomain="MANDRIVA"
ldapTLS="0"
suffix="dc=mandriva,dc=com"
sambaUnixIdPooldn="sambaDomainName=MANDRIVA,${suffix}"
#defaultMaxPasswordAge="45"
userSmbHome=""
userProfile=""
userHomeDrive=""

Now the directory can be populated. Type:

smbldap-populate -m 512 -a administrator

A user called « administrator »will be created, and a prompt will ask you to give its password.
Thanks to the «-m 512 » option, this user will belong to the «Domain Admins »group.

User password expiration

By default, the maximum password age of a SAMBA user is 42 days. Then the user will need to change his/her password.

If you don’t want password to expire, type:

pdbedit -P "maximum password age" -C 0

If you want to check your current password expiration policy:

pdbedit -P "maximum password age"

Giving privileges to SAMBA users and groups

If « enable privileges = yes »is set on your smb.conf, you can give privileges to SAMBA users and groups.

For example, to give to “Domain Admins” users the right to join a machine to the domain:

net -U administrator rpc rights grant 'DOMAIN\Domain Admins' SeMachineAccountPrivilege
Password:
Successfully granted rights.

Notice that you must replace «DOMAIN» by your SAMBA domain name in the command line.

Note

Users that can give privileges

Only users that belong to the “Domain Admins” group can use the net rpc rights grant command to assign privileges.

About SE Linux

The default SE Linux configuration may not allow SAMBA to launch the script
defined in “add machine script”, and so you won’t be able to join a machine
to the SAMBA domain.

MMC « base » plugin configuration

By default, you want your new user to belong to the « Domain Users » group.

You just need to set the «defaultUserGroup »option to «Domain Users»in
/etc/mmc/plugins/base.ini.

MMC « SAMBA » plugin configuration

For a full description of the MMC SAMBA plugin configuration file see
MMC SAMBA plugin configuration file.

You shouldn’t need to edit the configuration file (/etc/mmc/plugins/samba.ini).
This plugin won’t be activated if your LDAP directory does not include the
SAMBA schema, and well-known RIDs.

ACLs must be enabled on your filesystem. The SAMBA plugin needs them to set the
ACLs when creating shares, and SAMBA will be able to map NTFS ACLs to the POSIX
ACLs.

If you use XFS, ACLs are enabled by default. For ext3, you need to enable ACLs
in /etc/fstab.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

Shorewall plugin

Installation

Install the packages python-mmc-shorewall and mmc-web-shorewall.

MMC « shorewall » plugin

THe shorewall plugin will manage the files in /etc/shorewall. The plugin is
designed to manage internal and external interfaces. An external interface is
generally connected to an insecure network (Internet), and internal interface
is connected to a known/controlled network.

Typically if your server is installed in a datacenter and have a public
interfaces to the Internet, they are external interfaces. If your server is in
your local network you have only internal interfaces. A server acting as
a gateway has generally one public interface and one interface interface.

Once your interfaces are defined as ‘internal’ or ‘external’ all the firewall
configuration can be done from the MMC interface. Depending on your interfaces
configuration you will be able to access more or less features. For example, if
you have one internal and one external interface you will be able to create
a NAT rule for your internal network.

Example of the shorewall plugin with two ‘internal’ interfaces:

[image: ../../_images/shorewall.png]

MMC «shorewall »plugin configuration

Like every MMC plugin the configuration can be found in
/etc/mmc/plugins/shorewall.ini

The plugin will assume that an interface is internal or external because of its
zone name. By default if your zone begins by ‘lan’ (lan0, lanA ...) the
interface will be considered as ‘internal’. If the zone name begins by ‘wan’,
the interface is considered as ‘external’.

You can change theses names by changing the external_zones_names and
internal_zones_names options.

Shorewall configuration

The initial shorewall configuration should be done manually. Check the
shorewall docs for more information about shorewall configuratioon.

Example with a gateway (two interfaces, one internal, one external).

In /etc/shorewall/interfaces declare your network interfaces and associated
zones:

lan0 eth0
wan0 eth1

In /etc/shorewall/zones declare your zones types:

fw firewall
lan0 ipv4
wan0 ipv4

In /etc/shorewall/policy define the default policy between your zones:

fw all ACCEPT # server -> anywhere
lan0 fw DROP # lan0 -> server
wan0 fw DROP # wan0 -> server
all all DROP # catch-all rule

Finally, be sure that the file /etc/shorewall/rules exists

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

Squid plugin

Installation

Install the packages python-mmc-squid and mmc-web-squid.

LDAP directory configuration

Two groups will be created automatically in the LDAP tree when the mmc-agent
starts with the squid plugin enabled:

	InternetMaster: the group with total privilegies to access any site and downloads at any time

	InternetFiltered: is the group with Internet and extensions filtred by a list of keywords and domains

The group names and their description can be changed in the configuration file of the plugin: MMC squid plugin configuration file.

Squid configuration

Please use the provided squid configuration available in /usr/share/doc/mmc/contrib/squid/.

The configuration of the squid.conf file was customized to provide LDAP authentication for the users.
Copy the configuration file to /etc/squid or /etc/squid3/ (on Debian).

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

SSH public keys plugin

Installation

Install the packages python-mmc-sshlpk and mmc-web-sshlpk.

LDAP directory configuration

You need to import the sshlpk schema into the LDAP directory.
The schema file is provided by the python-mmc-sshlpk package in
/usr/share/doc/mmc/contrib/sshlpk/openssh-lpk.schema.

Once this schema is imported, you will be able to manage ssh
attributes thanks to the MMC.

Note

On Debian, run:

mmc-add-schema /usr/share/doc/mmc/contrib/sshlpk/openssh-lpk.schema /etc/ldap/schema

MMC «sshlpk »plugin configuration

For a full description of the MMC sshlpk plugin configuration file see
MMC sshlpk plugin configuration file.

This plugin won’t be activated if your LDAP directory does not include the
sshlpk schema.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

Userquota plugin

Installation

Install the packages python-mmc-userquota and mmc-web-userquota.

LDAP directory configuration

You need to import the quota schema into the LDAP directory.
The schema file is provided by the python-mmc-userquota package in
/usr/share/doc/mmc/contrib/userquota/quota.schema.

Once this schema is imported, you will be able to manage quota
attributes thanks to the MMC.

Note

On Debian, run:

mmc-add-schema /usr/share/doc/mmc/contrib/userquota/quota.schema /etc/ldap/schema

Enabling filesystem quotas on your server

If you are using an ext3 or XFS filesystem you should add the “usrquota” option
on the mountpoint(s) where you want to manage quotas in /etc/fstab.

If you want to manage quota on / with an XFS filesystem you need also to pass
the kernel option rootflags=usrquota. You’ll need to modify your GRUB
configuration for this.

If you are using an XFS filesystem, you must remount manually the partition
after adding the “usrquota” option on the mountpoints in /etc/fstab. On ext3
filesystems, you can remount the filesystem dynamicaly with the usrquota option
using the following command:

mount -o remount,usrquota /path/to/mount/point

On ext filesystems you have to create quota files on your mountpoints :

quotacheck -cum /path/to/mount/point

This is not needed on XFS.

Enable the quotas on all mountpoints with:

quotaon -au

Check that the quotas are enabled with:

quotaon -aup

MMC «userquota »plugin configuration

In the diskquota section of /etc/mmc/plugins/usrquota.ini you need to
specify the list of devices where you want to apply user quotas in the option
devicemap.

The devicemap option use the following format :

device1:blocksize:displayname,device2:blocksize:displayname,...

The device is the unix name of the partition (eg: “/dev/sda1”).

Note

Use the device name reported by the quotaon -aup command

The displayname is a string representing the device (eg: “Homes”). The quota
blocksize value is 1024 on Linux x86.

For a full description of the MMC userquota plugin configuration file see
MMC userquota plugin configuration file.

This plugin won’t be activated if your LDAP directory does not include the
quota schema or the quotas are not enabled on any mountpoints.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

Configuration files

	MMC mail plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section «userdefault »

	Zarafa support

	Section «mapping »

	MMC network plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section « dns »

	Section « dhcp »

	MMC SAMBA plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section «hooks »

	Section «userdefault »

	MMC squid plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section «squid »

	MMC sshlpk plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section «hooks »

	MMC userquota plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section «diskquota »

	Section «networkquota »

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

 	Configuration files

MMC mail plugin configuration file

This document explains the content of the MMC mail plugin configuration file.

Introduction

The «mail » plugin allows the MMC to add/remove mail delivery
management attributes to users and groups, and mail virtual
domains, etc. It uses the «base » plugin for all its related
LDAP operations.

The plugin configuration file is /etc/mmc/plugins/mail.ini.

Like all MMC related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the mail.ini available sections:

	Section name
	Description
	Optional

	main
	global mail plugin configuration
	no

	userdefault
	Attributes and Objectclass values that are added or deleted when adding mail attributes to a user
	yes

	mapping
	Map mail.schema attributes to other existing LDAP attributes
	yes

Section « main »

This sections defines the global options of the mail plugin

Available options for the «main » section:

	Option name
	Description
	Optional
	Default value

	disable
	Is this plugin disabled ?
	Yes
	1

	vDomainSupport
	Is virtual domain management enabled ?
	Yes
	0

	vDomainDN
	Organizational Unit where virtual mail domains will be stored
	Yes if vDomainSupport is disabled
	ou=mailDomains, %(baseDN)s

	vAliasesSupport
	Is virtual aliases management enabled ?
	Yes
	0

	vAliasesDN
	Organizational Unit where virtual aliases will be stored
	Yes if vAliasesSupport is disabled
	ou=mailAliases, %(baseDN)s

	zarafa
	Is Zarafa LDAP fields support enables ?
	Yes
	0

Section «userdefault »

When adding the mail attributes to a user, you may want to change the value of
the attributes that are added. Please look at the MMC base plugin configuration file for a look
at how this section works.

The mailbox field of this section is very important to set because it
determines the paths where the mails are delivered to users.

If the mails are delivered by Postfix, use this:

[userdefault]
mailbox = %homeDirectory%/Maildir/

If you use Dovecot as the delivery agent:

[userdefault]
mailbox = maildir:%homeDirectory%/Maildir/

Zarafa support

The zarafa.schema file must be included into the LDAP directory.

If Zarafa support is enabled, the “zarafa-user” object class
will be automatically added to users if the administrator gives
them mail access thanks to the MMC web interface.

The following fields are also available:

	Administrator of Zarafa (zarafaAdmin LDAP field)

	Shared store (zarafaSharedStoreOnly LDAP field)

	Zarafa account (zarafaAccount)

	Zarafa send as user list (zarafaSendAsPrivilege)

When you edit a group, you will also be able to set the “zarafa-group” object
class to it.

Section «mapping »

When using an existing LDAP your mail attributes may not have the same name
than the attributes of our mail.schema. The MDS mail plugin support attribute
mapping so that you can use your LDAP without modification.

The following attributes can be mapped to other values: mailalias, maildrop,
mailenable, mailbox, mailuserquota, mailhost

If your are using the zarafaAliases to store users aliases write:

[mapping]
mailalias = zarafaAliases

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

 	Configuration files

MMC network plugin configuration file

This document explains the content of the MMC network plugin configuration file.

Introduction

The « network » plugin allows the MMC Python API to manage DNS
zones and hosts, DHCP subnet and hosts, into a LDAP. Patched
version of ISC BIND (with LDAP sdb backend) and ISC DHCP (with
LDAP configuration file backend) are needed. PowerDNS support
is also available.

The plugin configuration file is /etc/mmc/plugins/network.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a «
[sectionname] » header. In each section options can be defined
like this « option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the network.ini available sections:

	Section name
	Description
	Optional

	main
	global network plugin configuration
	yes

	dns
	DNS related configuration
	no

	dhcp
	DHCP related configuration
	no

Section « main »

This sections defines the global options of the network plugin.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Is the plugin disabled
	yes
	no

Section « dns »

This section defines where DNS needed files, directories and LDAP entities
are located.

When the plugin starts for the first time, it creates:

	the directory bindroot/named.ldap. This directory will contains all
zones definitions

	the file bindroot/named.conf.ldap. This file will include all the
zone definitions stored into bindroot/named.ldap/

Available options for the “dns” section:

	Option name
	Description
	Optional
	Default value

	type
	DNS server type: “bind” or “pdns” (PowerDNS)
	yes
	bind

	dn
	LDAP DN where the DNS zones are stored
	no
	

	logfile
	path to BIND log file
	no
	

	pidfile
	path to BIND pid file
	no
	

	init
	BIND init script
	no
	

	bindchrootconfpath
	path to the named.ldap directory inside the BIND chroot. Don’t set it if BIND is not into a chroot.
	no
	

	bindroot
	path to the BIND configuration file directory
	no
	

	bindgroup
	gid which BIND is running (“bind” or “named”)
	no
	

	dnsreader
	LDAP user DN to use to read zone info
	yes
	

	dnsreaderpassword
	password of the user specified in dnsreader
	not if dnsreader is set
	

Here is an example for BIND on a Mandriva Corporate Server 4:

[dns]
type = bind
dn = ou=DNS,dc=mandriva,dc=com
pidfile = /var/lib/named/var/run/named.pid
init = /etc/rc.d/init.d/named
logfile = /var/log/messages
bindroot = /var/lib/named/etc/
bindchrootconfpath = /etc
bindgroup = named
dnsreader = uid=DNS Reader,ou=System Accounts,dc=mandriva,dc=com
dnsreaderpassword = s3cr3t

Section « dhcp »

This section defines where DHCP related files and LDAP entities are located.

Available options for the “backup-tools” section:

	Option name
	Description
	Optional
	Comment

	dn
	LDAP DN where the DHCP server configuration is stored
	no
	

	pidfile
	path to DHCP server pidfile
	no
	

	init
	path to DHCP service init script
	no
	

	logfile
	path to DHCP service log file
	no
	

	leases
	path to DHCP service leases file
	no
	

	hostname
	name of the DHCP server to user
	no
	Set manually the master DHCP hostname in the LDAP. If not set, DHCP name will be the local hostname. If set, you can configure the “ldap-dhcp-server-cn” option in dhcpd.conf to match this setting

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

 	Configuration files

MMC SAMBA plugin configuration file

This document explains the content of the MMC SAMBA plugin configuration file.

Introduction

The «samba » plugin allows the MMC to add/remove SAMBA attributes to users
and groups, to manage SAMBA share, etc. It uses the «base »plugin for all
its related LDAP operations.

The plugin configuration file is /etc/mmc/plugins/samba.ini.

Like all MMC related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the samba.ini available sections:

	Section name
	Description
	Optional

	main
	global SAMBA plugin configuration
	yes

	hooks
	Hooks for scripts that interacts with the MMC
	yes

	userdefault
	Attributes and Objectclass values that are added or deleted when adding a new user into the LDAP
	yes

Section « main »

This section defines the global options of the SAMBA plugin.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	baseComputersDN
	LDAP organisational unit DN where the SAMBA computer accounts are located
	no
	

	sambaConfFile
	Main SAMBA configuration file path
	yes
	/etc/samba/smb.conf

	sambaInitScript
	System SAMBA initialization script
	yes
	/etc/init.d/samba

	sambaAvSo
	VFS shared library location for anti-virus check on shares (scannedonly, vscan-clamav...). If this file is present, we can enable anti-virus check when creating a SAMBA share. This results to an option on the share : vfs object = libname (without .so suffix)
	yes
	/usr/lib/samba/vfs/vscan-clamav.so

	defaultSharesPath
	Directory where the SAMBA shares are created, if no path is specified
	no
	

	authorizedSharePaths
	Comma-separated list of directories where SAMBA shares are allowed to be created.
	yes
	The value of defaultSharesPath

Section «hooks »

The hooks system allow you to run external script when doing some operations
with the MMC.

The script will be run as root user, with as only argument the full LDIF of
the LDAP user. For the «addsmbattr »and « changeuserpasswd » hook, the LDIF
file will contains the userPassword attributes in cleartext.

Available options for the “hooks” section:

	Option name
	Description
	Optional

	addsmbattr
	path to the script launched when the SAMBA LDAP attributes has been added to a user
	yes

	changesambaattributes
	path to the script launched when the SAMBA LDAP attributes has been changed on a user
	yes

	changeuserpasswd
	path to the script launched when the SAMBA password of a user is changed
	yes

Section «userdefault »

When adding the SAMBA attributes to a user, you may want to change the value
of the attribute that are added. Please look at the MMC base plugin configuration file for a
look at how this section works.

For example, if you want to delete the sambaPwdMustChange attribute of a
user entry:

sambaPwdMustChange = DELETE

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

 	Configuration files

MMC squid plugin configuration file

This document explains the content of the MMC squid plugin configuration file.

Introduction

The plugin allows control of internet content filters, manipulating squid files directly and use the LDAP base to authentication of users.

The plugin configuration file is /etc/mmc/plugins/squid.ini.

Like all MMC related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the squid.ini available sections:

	Section name
	Description
	Optional

	main
	global mail plugin configuration
	no

	squid
	paths and names of LDAP access groups
	no

Section « main »

This sections defines the global options of the squid plugin

Available options for the «main » section:

	Option name
	Description
	Optional
	Default value

	disable
	Is this plugin disabled ?
	Yes
	1

Section «squid »

Available options for the «main » section:

	Option name
	Description
	Optional
	Default value

	squidBinary
	path to the squid binary
	No
	/usr/sbin/squid3

	squidInit
	the path of the squid init script
	No
	/etc/init.d/squid3

	squidPid
	the path of squid pid file
	No
	/var/run/squid3.pid

	sargBinary
	the path of the sarg binary
	Yes
	/usr/bin/sarg

	groupMaster
	the name of the group that have full access
	No
	InternetMaster

	groupMasterDesc
	the group description
	No
	Full Internet access

	groupFiltered
	the name of the group that have a filtered access
	No
	InternetFiltered

	groupFilteredDesc
	the group description
	No
	Filtered Internet access

	squidRules
	the path where will be stored rule files
	No
	/etc/squid/rules/

	blacklist
	path to the blacklist file
	No
	%(squidRules)s/blacklist.txt

	whitelist
	path to the whitelist file
	No
	%(squidRules)s/whitelist.txt

	blacklist_ext
	path to the extensions blacklist file
	No
	%(squidRules)s/blacklist_ext.txt

	timeranges
	path to the timeranges file
	No
	%(squidRules)s/timeranges.txt

	machines
	path to the machines file
	No
	%(squidRules)s/machines.txt

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

 	Configuration files

MMC sshlpk plugin configuration file

This document explains the content of the MMC sshlpk plugin configuration file.

Introduction

The «sshlpk » plugin allows the MMC to manage lists of SSH public keys on
users. It uses the «base »plugin for all its related LDAP operations.

The plugin configuration file is /etc/mmc/plugins/sshlpk.ini.

Like all MMC related configuration file, its file format is INI style. The
file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the sshlpk.ini available sections:

	Section name
	Description
	Optional

	main
	global sshlpk plugin configuration
	no

	hooks
	hooks for scripts that interacts with the MMC
	yes

Section « main »

This sections defines the global options of the sshlpk plugin

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Define if the plugin is disabled or not
	no
	no

Section «hooks »

The hooks system allow you to run external script when doing some operations
with the MMC.

The script will be run as root user, with as only argument the full LDIF
of the LDAP user.

Available options for the “hooks” section:

	Option name
	Description
	Optional

	updatesshkeys
	path to the script launched when the user’s SSH public keys are updated
	yes

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Mandriva Directory Server

 	Configuration files

MMC userquota plugin configuration file

This document explains the content of the MMC userquota plugin configuration file.

Introduction

The «userquota » plugin allows the MMC to set filesystem quotas to users.
The plugin provides LDAP attributes for storing quota information. The plugin
allows also to store network quotas in the LDAP directory for external tools.
It uses the «base »plugin for all its related LDAP operations.

The plugin configuration file is /etc/mmc/plugins/userquota.ini.

Like all MMC related configuration file, its file format is INI style. The file
is made of sections, each one starting with a «[sectionname] »header. In each
section options can be defined like this «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the userquota.ini available sections:

	Section name
	Description
	Optional

	main
	global userquota plugin configuration
	no

	diskquota
	filesystem quota configuration
	yes

	networkquota
	network quota configuration
	yes

Section « main »

This sections defines the global options of the mail plugin

Available options for the «main » section:

	Option name
	Description
	Optional
	Default value

	disable
	Is this plugin disabled ?
	no
	yes

Section «diskquota »

Available options for the «diskquota » section:

	Option name
	Description
	Optional
	Default value

	enable
	Is this plugin enabled ?
	No
	0

	devicemap
	The definition of the filesystems using quotas
	No
	/dev/sda1:1024:Root

	softquotablocks
	Coef used to calculate the soft blocks limit
	No
	0.95

	softquotainodes
	Coef used to calculate the soft inodes limit
	No
	0.95

	inodesperblock
	Coef used to calculate the inodes limit from the blocks limit
	No
	1.60

	setquotascript
	Command template for applying quotas on filesystem
	No
	/usr/sbin/setquota $uid $softblocks $blocks $softinodes $inodes $devicepath

	delquotascript
	Command template for removing quotas on filesystem
	No
	/usr/sbin/setquota $uid 0 0 0 0 $devicepath

	runquotascript
	Script for setting quotas
	No
	/bin/sh

The soft limits of the quotas are calculated using the softquotablocks and
softquotainodes coefs. The inode limit is calculated using the inodesperblock
coef.

The inode limits protects the filesystem if some user create to much hardlinks
as a hardlink use one inode but no block on the filesystem.

The setquotascript and delquotascript options define the commands templates
used to apply or remove quotas on the filesystem. The runquotascript is the
name of a shell script which contain the quota commands to be run on the system.
If it is set to /bin/sh, then quotas will be applied on the local system.
Check the applyquotas.sh example script to see how you can apply quotas on a
different server. This is useful if your mmc-agent does not run on your file
server.

Section «networkquota »

Available options for the «networkquota » section:

	Option name
	Description
	Optional
	Default value

	enable
	Is this plugin enabled ?
	No
	0

	networkmap
	The definition of networks using quotas
	No
	Internet:0.0.0.0/0:any

This section define the networks on which you want to use quotas. This allows
you to store differents quotas values for differents network/protocol pair.
This plugin will update the ldap records for network quotas for each user,
but does not attempt to apply these quotas to a firewall, as this will be
different for most people.

The networkmap option must be formatted with the following format :

displayName:network:protocol,...

Internet:0.0.0.0/0:any,Local:192.168.0.0/24:any

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

Pulse 2

	Introduction

	Installation
	Pre-requisites

	Packages naming conventions

	Sample configuration files

	Installation options

	Configuration files
	MMC dyngroup plugin configuration file

	MMC glpi plugin configuration file

	MMC imaging plugin configuration file

	Pulse 2 Imaging Server configuration file

	MMC inventory plugin configuration file

	Pulse 2 Inventory server configuration file

	Pulse 2 Launcher configuration file

	MMC MSC plugin configuration file

	Pulse 2 Package server configuration file

	MMC pkgs plugin configuration file

	MMC pulse2 plugin configuration file

	Pulse 2 Scheduler configuration file

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

Introduction

Pulse 2 is an Open Source tool that simplifies application deployment,
inventory, and maintenance of an IT network. It provides useful features to
create rescue disk images to restore a unique computer or image to be deployed
across the whole computers network. Remote application deployment and
updates. Software and hardware inventory, remote diagnostic and control.

Pulse2 helps organizations with a range of a few computers to 100 000+
heterogeneous to inventory, maintain, update and take full control on their
IT assets. It’s support for heterogeneous platforms includes MS Windows,
GNU/Linux (Mandriva, Redhat, Debian, Ubuntu., etc.), Mac OSX, HP-UX, IBM AIX and
Solaris systems.

Pulse 2 is an easy-to-use, safe and flexible solution that allows you:

	Supervise large scale facilities through the use of a single Web interface
console.

	Create and deploy hard disk images of your computers (new imaging module).

	Deploy new software and security updates on all your IT assets.

	Perform software and hardware inventory.

	Do remote diagnostics and remote management.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

Installation

Pulse2 quick install guide.

In order to install Pulse2 and it’s plugins you first need to install and
configure MMC.

Pre-requisites

The following tools are needed in order for Pulse2 to install and run
properly:

	mmc-core framework

	python >= 2.5, with the following modules:
* sqlalchemy
* mysqldb

	OpenSSH client

	iputils (ping)

	perl, with the following modules:
* syslog

	gettext

	NFS server (for imaging)

	7z (for win32 client generation)

	NSIS (for building win32 agent pack, can be disabled)

Furthermore, the following services must be accessible, either on the local
machine or through the network:

	MySQL

	DHCP server (for imaging purpose)

If you build Pulse2 from scm repository, you will also need the following tools
(not needed if you use the .tar.gz archive):

	autoconf

	automake

	xsltproc

	docbook xsl

The MMC web interface is written in PHP4. Basically, you just need to install
an Apache 2 server with PHP5 support. The XML-RPC module of PHP is needed too.

Packages naming conventions

Here are the packages naming conventions:

	pulse2-SERVER: the Pulse2 servers

	python-mmc-PLUGIN: MMC agent plugin

	mmc-web-PLUGIN: web interface plugin

Where PLUGIN can be one of dyngroup, glpi, imaging, inventory, msc, pkgs
and pulse2.

Where SERVER can be one of common, imaging-server, inventory-server,
launcher, package-server and scheduler.

Sample configuration files

All related sample configuration files are available or on our repository for
Pulse2 plugins [https://github.com/wiliamsouza/mmc/tree/master/pulse2/services/conf/plugins] and servers [https://github.com/wiliamsouza/mmc/tree/master/pulse2/services/conf/pulse2].

Installation options

There are three easy options to install:

	Install an official release from source tarball.

	Install a version provided by your operating system distribution.

	Install the latest development version.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

Installing the development version

In order to install Pulse2 and it’s plugins you first need to install and
configure MMC.

This how to will guide you through the installation and configuration of Pulse2
development environment

Installation form source code

Pre-requisites

Debian:

apt-get install git-core build-essential autogen autoconf libtool gettext
python-sqlalchemy python-mysqldb python-ldap python-openssl
python-twisted-web nsis xsltproc docbook-xsl

Centos:

yum install git-core

Mandriva:

urpmi git-core

Get the source code

The development source code is managed in github https://github.com/mandriva-management-console/mmc.

Clone the github repository:

$ git clone git://github.com/mandriva-management-console/mmc.git

To compile and install all modules run:

$ $ cd pulse2/
$./autogen.sh
$./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var
$ make
make install

You can update by running the following command:

$ git pull origin master

To keep your configuration files intact you may change the configure line to:

$./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var --disable-conf

The option --disable-conf will disable configuration files installation.

OpenLDAP

Debian:

apt-get install slapd ldap-utils

Debconf will ask only ldap root password by default to more granular configuration use:

dpkg-reconfigure slapd

Using dpkg-reconfigure debconf will ask you for:

	Omit OpenLDAP server configuration?: Choose <No>.

	DNS domain name: Enter you domain name.

	Organization name: Enter organization name.

	Admin password: Enter a password and confirm in next screen.

	Database backend to use: choose HDB.

	Do you want the database to be removed when slapd is purged: Choose <No>.

	Allow LDAPv2 protocol: Choose <NO>.

Centos:

yum install

Mandriva:

urpmi

OpenLDAP Schema

Old versions

The mmc schema is needed to set ACLs on users in the MMC web interface:

cp /usr/share/doc/python-mmc-base/contrib/ldap/mmc.schema /etc/ldap/schema/

Then in /etc/ldap/slapd.conf include the schema:

include /etc/ldap/schema/mmc.schema

New versions

#TODO: Talk more about openldap changes in config and schema new storage.

Copy mmc schema to your current directory:

$ cp /usr/share/doc/python-mmc-base/contrib/ldap/mmc.schema .

Create a file mmc.conf with:

include mmc.schema

Create a folder schemas:

$ mkdir schemas

Convert mcc.schema to ldif:

$ slaptest -f mmc.conf -F schemas/

Edit mmc schema, remove {0} from dn:, cn: and add cn=schema,cn=config to dn

dn: cn=mmc,cn=schema,cn=config
objectClass: olcSchemaConfig
cn: mmc

Remove the following lines at the bottom of that file:

structuralObjectClass: olcSchemaConfig
entryUUID: 0ec2fe60-1381-1031-8f21-f92982aeda45
creatorsName: cn=config
createTimestamp: 20120405153755Z
entryCSN: 20120405153755.316520Z#000000#000#000000
modifiersName: cn=config
modifyTimestamp: 20120405153755Z

Add schema to ldap:

ldapadd -Y EXTERNAL -H ldapi:/// -f schemas/cn\=config/cn\=schema/cn\=\{0\}mmc.ldif

Restart the slapd daemon.

MySQL

Debian:

apt-get install mysql-server

Debconf will ask mysql root password.

Centos:

yum install

Mandriva:

urpmi

Apache HTTP server

Debian:

apt-get install apache2 php5 php5-gd php5-xmlrpc

Centos:

yum install

Mandriva:

urpmi

Configuring apache2 and php

Enable mmc web site:

ln -s /etc/mmc/apache/mmc.conf /etc/apache2/sites-enabled/mmc.conf

Restart apache2:

/etc/init.d/apache2 restart

Pulse setup

pulse2-setup will ask:

INFO - Load defaults values from existing config
INPUT - Enable audit module (Y/n): y
INPUT - Enable inventory server (Y/n): y
INPUT - Enable imaging server (Y/n): y
INPUT - Enable package server (proxy) (Y/n): y
INPUT - Server external IP address (default: 10.0.2.15): 172.16.0.4
INFO - Run setup
INPUT - Database host (default: localhost):
INPUT - Database admin user (default: root):
INPUT - Database admin password:
...
INPUT - LDAP uri (default: ldap://127.0.0.1:389):
INPUT - LDAP base DN (default: dc=mandriva, dc=com):
INPUT - LDAP admin DN (default: cn=admin, dc=mandriva, dc=com):
INPUT - LDAP admin password:
...
INPUT - Wake-on-lan tool path (default: /usr/sbin/pulse2-wol):

DHCP Install

Debian:

apt-get install isc-dhcp-server

DHCP Setup

The imaging module of Pulse 2 needs PXE functionalities, NFS and TFTP services.
For PXE configure the DHCP server on the network to serve the Pulse2 PXE
bootmenu.

For example with dhcp3-server in /etc/dhcp3/dhcpd.conf:

 subnet 192.168.0.0 netmask 255.255.255.0 {
 option broadcast-address 192.168.0.255; # broadcast address
 option domain-name "pulse2.test"; # domain name
 option domain-name-servers 192.168.0.2; # dns servers
 option routers 192.168.0.2; # default gateway
 pool {
 range 192.168.0.170 192.168.0.180;
 filename "/bootloader/pxe_boot";
 next-server 192.168.0.237;
 }
}

	filename and next-server are the relevant options to set.

You can find an example file for dhcp3 server in or repository [https://github.com/mandriva-management-console/mmc/blob/master/pulse2/services/contrib/dhcp/dhcpd.conf].

Imaging client installation

Imaging client can run only on i386 compliant machines. It is not run
directly on the server, but served through the network to i386 machines.
For your convenience, prebuilt binaries are available, so that you can
install it on a server which is not i386.

Once you have downloaded prebuilt binaries as
pulse2-imaging-client-<version>_i386.tar.gz, simply run the following, as root:
$ tar xfC pulse2-imaging-client-<version>_i386.tar.gz /

All files are extracted in /var/lib/pulse2/imaging/ dir.

As to serve the imaging client to the machines, you must then configure the
following network services.

NFS setup

In /etc/exports file, add the following lines:

/var/lib/pulse2/imaging/computers *(async,rw,no_root_squash,subtree_check)
/var/lib/pulse2/imaging/masters *(async,rw,no_root_squash,subtree_check)
/var/lib/pulse2/imaging/postinst *(async,ro,no_root_squash,subtree_check)

Then reload the new NFS configuration, as root.

Check the export list:

showmount -e
Export list for imaging:
/var/lib/pulse2/imaging/masters *
/var/lib/pulse2/imaging/postinst *
/var/lib/pulse2/imaging/computers *

TFTP Setup

Bootloader and kernel are served to the client with TFTP protocol.
We recommend using the atftpd server as it supports multicast..

You must configure the TFTP server to use as base directory:

/var/lib/pulse2/imaging

Note

don’t use inetd.

Then check the configuration:

atftp localhost
tftp> get /bootloader/pxe_boot
tftp> quit
rm pxe_boot

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

DHCP Setup

The imaging module of Pulse 2 needs PXE functionalities, NFS and TFTP services.
For PXE configure the DHCP server on the network to serve the Pulse2 PXE
bootmenu.

For example with dhcp3-server in /etc/dhcp3/dhcpd.conf:

 subnet 192.168.0.0 netmask 255.255.255.0 {
 option broadcast-address 192.168.0.255; # broadcast address
 option domain-name "pulse2.test"; # domain name
 option domain-name-servers 192.168.0.2; # dns servers
 option routers 192.168.0.2; # default gateway
 pool {
 range 192.168.0.170 192.168.0.180;
 filename "/bootloader/pxe_boot";
 next-server 192.168.0.237;
 }
}

	filename and next-server are the relevant options to set.

You can find an example file for dhcp3 server in or repository [https://github.com/mandriva-management-console/mmc/blob/master/pulse2/services/contrib/dhcp/dhcpd.conf].

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

Platform-specific installation instructions

How to install the Mandriva Management Console provided by a third-party
Linux distributors.

In order to install Pulse2 and it’s plugins you first need to install and
configure MMC.

Note

Coming soon

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

Imaging client installation

Imaging client can run only on i386 compliant machines. It is not run
directly on the server, but served through the network to i386 machines.
For your convenience, prebuilt binaries are available, so that you can
install it on a server which is not i386.

Once you have downloaded prebuilt binaries as
pulse2-imaging-client-<version>_i386.tar.gz, simply run the following, as root:
$ tar xfC pulse2-imaging-client-<version>_i386.tar.gz /

All files are extracted in /var/lib/pulse2/imaging/ dir.

As to serve the imaging client to the machines, you must then configure the
following network services.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

NFS setup

In /etc/exports file, add the following lines:

/var/lib/pulse2/imaging/computers *(async,rw,no_root_squash,subtree_check)
/var/lib/pulse2/imaging/masters *(async,rw,no_root_squash,subtree_check)
/var/lib/pulse2/imaging/postinst *(async,ro,no_root_squash,subtree_check)

Then reload the new NFS configuration, as root.

Check the export list:

showmount -e
Export list for imaging:
/var/lib/pulse2/imaging/masters *
/var/lib/pulse2/imaging/postinst *
/var/lib/pulse2/imaging/computers *

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

Pulse setup

pulse2-setup will ask:

INFO - Load defaults values from existing config
INPUT - Enable audit module (Y/n): y
INPUT - Enable inventory server (Y/n): y
INPUT - Enable imaging server (Y/n): y
INPUT - Enable package server (proxy) (Y/n): y
INPUT - Server external IP address (default: 10.0.2.15): 172.16.0.4
INFO - Run setup
INPUT - Database host (default: localhost):
INPUT - Database admin user (default: root):
INPUT - Database admin password:
...
INPUT - LDAP uri (default: ldap://127.0.0.1:389):
INPUT - LDAP base DN (default: dc=mandriva, dc=com):
INPUT - LDAP admin DN (default: cn=admin, dc=mandriva, dc=com):
INPUT - LDAP admin password:
...
INPUT - Wake-on-lan tool path (default: /usr/sbin/pulse2-wol):

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

Installation from source tarball

In order to install Pulse2 and it’s plugins you first need to install and
configure MMC.

Get the current tarball at download page [http://projects.mandriva.org/projects/mmc/files]:

tar xzvf pulse2-.x.y.x.tar.gz
cd pulse2-x.y.z
./configure --prefix=/usr --sysconfdir=/etc --localstatedir=/var
make
make install

The pulse2-setup tool can then be used to provision databases,
setup and check configuration files, etc. If you plan to use imaging
service, please read the following section, as pulse2-setup does not
handle with its configuration.

The default $PREFIX for installation is /usr/local. You can change it
on the ./configure line by adding the option --prefix=/usr for example.

configure options

The configure recognizes the following options to control how it operate:

	–help, -h: Print a summary of all of the options to configure, and exit.

	
	–help=short –help=recursive: Print a summary of the options unique to this

	package’s configure, and exit. The short
variant lists options used only in the top
level, while the recursive variant lists
options also present in any nested packages.

	
	–version, -V: Print the version of Autoconf used to generate the configure

	script, and exit.

	
	–cache-file=FILE: Enable the cache: use and save the results of the tests

	in FILE, traditionally config.cache. FILE defaults to
/dev/null to disable caching.

	–config-cache, -C: Alias for –cache-file=config.cache.

	
	–quiet, –silent, -q: Do not print messages saying which checks are

	being made. To suppress all normal output,
redirect it to /dev/null (any error messages
will still be shown).

	
	–srcdir=DIR: Look for the package’s source code in directory DIR. Usually

	configure can determine that directory automatically.

	
	–prefix=DIR: Use DIR as the installation prefix. note Installation

	Names for more details, including other options available
for fine-tuning the installation locations.

	
	–no-create, -n: Run the configure checks, but stop before creating any

	output files.

	
	–disable-conf: Do not install conf files. On a first install, you may not

	use this option as configuration files are required.

	
	–disable-conf-backup: Do not backup configuration files if they are

	already installed. Default is to create backup
files like *.~N~.

	–disable-wol: Do not build and install wake-on-lan tool.

OpenLDAP Schema

Old versions

The mmc schema is needed to set ACLs on users in the MMC web interface:

cp /usr/share/doc/python-mmc-base/contrib/ldap/mmc.schema /etc/ldap/schema/

Then in /etc/ldap/slapd.conf include the schema:

include /etc/ldap/schema/mmc.schema

New versions

#TODO: Talk more about openldap changes in config and schema new storage.

Copy mmc schema to your current directory:

$ cp /usr/share/doc/python-mmc-base/contrib/ldap/mmc.schema .

Create a file mmc.conf with:

include mmc.schema

Create a folder schemas:

$ mkdir schemas

Convert mcc.schema to ldif:

$ slaptest -f mmc.conf -F schemas/

Edit mmc schema, remove {0} from dn:, cn: and add cn=schema,cn=config to dn

dn: cn=mmc,cn=schema,cn=config
objectClass: olcSchemaConfig
cn: mmc

Remove the following lines at the bottom of that file:

structuralObjectClass: olcSchemaConfig
entryUUID: 0ec2fe60-1381-1031-8f21-f92982aeda45
creatorsName: cn=config
createTimestamp: 20120405153755Z
entryCSN: 20120405153755.316520Z#000000#000#000000
modifiersName: cn=config
modifyTimestamp: 20120405153755Z

Add schema to ldap:

ldapadd -Y EXTERNAL -H ldapi:/// -f schemas/cn\=config/cn\=schema/cn\=\{0\}mmc.ldif

Restart the slapd daemon.

Pulse setup

pulse2-setup will ask:

INFO - Load defaults values from existing config
INPUT - Enable audit module (Y/n): y
INPUT - Enable inventory server (Y/n): y
INPUT - Enable imaging server (Y/n): y
INPUT - Enable package server (proxy) (Y/n): y
INPUT - Server external IP address (default: 10.0.2.15): 172.16.0.4
INFO - Run setup
INPUT - Database host (default: localhost):
INPUT - Database admin user (default: root):
INPUT - Database admin password:
...
INPUT - LDAP uri (default: ldap://127.0.0.1:389):
INPUT - LDAP base DN (default: dc=mandriva, dc=com):
INPUT - LDAP admin DN (default: cn=admin, dc=mandriva, dc=com):
INPUT - LDAP admin password:
...
INPUT - Wake-on-lan tool path (default: /usr/sbin/pulse2-wol):

Imaging client installation

Imaging client can run only on i386 compliant machines. It is not run
directly on the server, but served through the network to i386 machines.
For your convenience, prebuilt binaries are available, so that you can
install it on a server which is not i386.

Once you have downloaded prebuilt binaries as
pulse2-imaging-client-<version>_i386.tar.gz, simply run the following, as root:
$ tar xfC pulse2-imaging-client-<version>_i386.tar.gz /

All files are extracted in /var/lib/pulse2/imaging/ dir.

As to serve the imaging client to the machines, you must then configure the
following network services.

DHCP Setup

The imaging module of Pulse 2 needs PXE functionalities, NFS and TFTP services.
For PXE configure the DHCP server on the network to serve the Pulse2 PXE
bootmenu.

For example with dhcp3-server in /etc/dhcp3/dhcpd.conf:

 subnet 192.168.0.0 netmask 255.255.255.0 {
 option broadcast-address 192.168.0.255; # broadcast address
 option domain-name "pulse2.test"; # domain name
 option domain-name-servers 192.168.0.2; # dns servers
 option routers 192.168.0.2; # default gateway
 pool {
 range 192.168.0.170 192.168.0.180;
 filename "/bootloader/pxe_boot";
 next-server 192.168.0.237;
 }
}

	filename and next-server are the relevant options to set.

You can find an example file for dhcp3 server in or repository [https://github.com/mandriva-management-console/mmc/blob/master/pulse2/services/contrib/dhcp/dhcpd.conf].

NFS setup

In /etc/exports file, add the following lines:

/var/lib/pulse2/imaging/computers *(async,rw,no_root_squash,subtree_check)
/var/lib/pulse2/imaging/masters *(async,rw,no_root_squash,subtree_check)
/var/lib/pulse2/imaging/postinst *(async,ro,no_root_squash,subtree_check)

Then reload the new NFS configuration, as root.

Check the export list:

showmount -e
Export list for imaging:
/var/lib/pulse2/imaging/masters *
/var/lib/pulse2/imaging/postinst *
/var/lib/pulse2/imaging/computers *

TFTP Setup

Bootloader and kernel are served to the client with TFTP protocol.
We recommend using the atftpd server as it supports multicast..

You must configure the TFTP server to use as base directory:

/var/lib/pulse2/imaging

Note

don’t use inetd.

Then check the configuration:

atftp localhost
tftp> get /bootloader/pxe_boot
tftp> quit
rm pxe_boot

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

OpenLDAP Schema

Old versions

The mmc schema is needed to set ACLs on users in the MMC web interface:

cp /usr/share/doc/python-mmc-base/contrib/ldap/mmc.schema /etc/ldap/schema/

Then in /etc/ldap/slapd.conf include the schema:

include /etc/ldap/schema/mmc.schema

New versions

#TODO: Talk more about openldap changes in config and schema new storage.

Copy mmc schema to your current directory:

$ cp /usr/share/doc/python-mmc-base/contrib/ldap/mmc.schema .

Create a file mmc.conf with:

include mmc.schema

Create a folder schemas:

$ mkdir schemas

Convert mcc.schema to ldif:

$ slaptest -f mmc.conf -F schemas/

Edit mmc schema, remove {0} from dn:, cn: and add cn=schema,cn=config to dn

dn: cn=mmc,cn=schema,cn=config
objectClass: olcSchemaConfig
cn: mmc

Remove the following lines at the bottom of that file:

structuralObjectClass: olcSchemaConfig
entryUUID: 0ec2fe60-1381-1031-8f21-f92982aeda45
creatorsName: cn=config
createTimestamp: 20120405153755Z
entryCSN: 20120405153755.316520Z#000000#000#000000
modifiersName: cn=config
modifyTimestamp: 20120405153755Z

Add schema to ldap:

ldapadd -Y EXTERNAL -H ldapi:/// -f schemas/cn\=config/cn\=schema/cn\=\{0\}mmc.ldif

Restart the slapd daemon.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Installation

TFTP Setup

Bootloader and kernel are served to the client with TFTP protocol.
We recommend using the atftpd server as it supports multicast..

You must configure the TFTP server to use as base directory:

/var/lib/pulse2/imaging

Note

don’t use inetd.

Then check the configuration:

atftp localhost
tftp> get /bootloader/pxe_boot
tftp> quit
rm pxe_boot

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

Configuration files

	MMC dyngroup plugin configuration file
	Introduction

	Configuration file sections

	MMC glpi plugin configuration file
	Introduction

	Configuration file sections

	MMC imaging plugin configuration file
	Introduction

	Configuration file sections

	Pulse 2 Imaging Server configuration file
	Introduction

	Configuration file sections

	MMC inventory plugin configuration file
	Introduction

	Configuration file sections

	Pulse 2 Inventory server configuration file
	Introduction

	Configuration file sections

	Pulse 2 Launcher configuration file
	Introduction

	Configuration file sections

	MMC MSC plugin configuration file
	Introduction

	Configuration file sections

	Pulse 2 Package server configuration file
	Introduction

	Configuration file sections

	Pulse 2 package server performance on win32 platforms

	MMC pkgs plugin configuration file
	Introduction

	Configuration file sections

	MMC pulse2 plugin configuration file
	Introduction

	Configuration file sections

	Pulse 2 Scheduler configuration file
	Introduction

	Configuration file sections

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

MMC dyngroup plugin configuration file

This document explains the content of the MMC dyngroup plugin configuration file.

Introduction

The « dyngroup » plugin is the MMC plugin in charge of creating, modifying and
deleting groups of machines.

The plugin configuration file is /etc/mmc/plugins/dyngroup.ini.

Like all MMC related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now 3 sections are available in this configuration file:

	Section name
	Description
	Optional

	main
	Mostly MMC related behaviors
	no

	database
	Needed options to connect to the database
	no

	querymanager
	Describe how it react as a potential queriable plugin
	yes

« main » section

This section is used to give directives to the MMC agent.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Whenever use this plugin (or not)
	yes
	0

	dyngroup_activate
	Tell if the dynamic group part is activated or if there is only the static group part
	yes
	1

	profiles_enable
	Allow imaging fonctionnality on a profile, that is not available on static, and dynamic group
	yes
	0

	default_module
	Set the module that is going to be automatically selected is more than one dyngroup module is defined
	yes
	

	max_elements_for_static_list
	The maximum number of elements that have to be display in the static group creation list
	yes
	2000

« database » section

This section defines the database options.

Available options for the “database” section:

	Option name
	Description
	Optional
	Default value

	dbdriver
	DB driver to use
	no
	mysql

	dbhost
	Host which hosts the DB
	no
	127.0.0.1

	dbport
	Port on which to connect to reach the DB
	no
	3306 (aka “default MySQL port”)

	dbname
	DB name
	no
	dyngroup

	dbuser
	Username to give while conencting to the DB
	no
	mmc

	dbpasswd
	Password to give while connecting to the DB
	no
	mmc

	dbdebug
	Whenever log DB related exchanges
	yes
	ERROR

	dbpoolrecycle
	DB connection time-to-live
	yes
	60 (seconds)

	dbpoolsize
	The number of connections to keep open inside the connection pool
	yes
	5

	dbsslenable
	SSL connection to the database
	yes
	0

	dbsslca
	CA certificate for SSL connection
	yes
	

	dbsslcert
	Public key certificate for SSL connection
	yes
	

	dbsslkey
	Private key certificate for SSL connection
	yes
	

« querymanager » section

This section define how this plugin react as a potential queriable plugin.

Available options for the “querymanager” section:

	Option name
	Description
	Optional
	Default value

	activate
	If queries on the group name are possible.
	yes
	1

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

MMC glpi plugin configuration file

This document explains the content of the MMC glpi plugin configuration file.

Introduction

The « glpi » plugin is the MMC plugin in charge of the glpi machine backend,
it should only be used when invnetory is not used.

The plugin configuration file is /etc/mmc/plugins/glpi.ini.

Like all MMC related configuration file, its file format is INI style. The
file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now four sections are available in this configuration file:

	Section name
	Description
	Optional

	main
	Mostly MMC related behaviors
	no

	querymanager
	Describe how it react as a potential queriable plugin
	yes

	authentication_glpi
	Give the way to authenticate on glpi
	yes

	provisioning_glpi
	Give the permissions that are going to be associated with users (based on permissions in glpi)
	yes

« main » section

This section is used to give directives to the MMC agent.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Whenever use this plugin (or not)
	yes
	0

	dbdriver
	DB driver to use
	no
	mysql

	dbhost
	Host which hosts the DB
	no
	127.0.0.1

	dbport
	Port on which to connect to reach the DB
	no
	3306 (aka “default MySQL port”)

	dbname
	DB name
	no
	glpi

	dbuser
	Username to give while conencting to the DB
	no
	mmc

	dbpasswd
	Password to give while connecting to the DB
	no
	mmc

	dbdebug
	Whenever log DB related exchanges
	yes
	ERROR

	dbpoolrecycle
	DB connection time-to-live
	yes
	60 (seconds)

	dbpoolsize
	The number of connections to keep open inside the connection pool
	yes
	5

	dbsslenable
	SSL connection to the database
	yes
	0

	dbsslca
	CA certificate for SSL connection
	yes
	

	dbsslcert
	Public key certificate for SSL connection
	yes
	

	dbsslkey
	Private key certificate for SSL connection
	yes
	

	localisation
	Tells if the glpi entities are going to be used in pulse2
	yes
	

	active_profiles
	Tells which profiles are going to be used
	yes
	

	filter_on
	add a filter on the glpi_computers table when retrieving machines
	yes
	state==3

« querymanager » section

This section define how this plugin react as a potential queriable plugin.

Available options for the “querymanager” section:

	Option name
	Description
	Optional
	Default value

	activate
	If queries on glpi inventory criterions are possible.
	yes
	True

« authentication_glpi » section

This section define a way to authenticate thru glpi.

Available options for the “authentication_glpi” section:

	Option name
	Description
	Optional
	Default value

	baseurl
	glpi login page url yes http://glpi-server/glpi/
	
	

	doauth
	Before provisioning, should we perform a GLPI authentication to create or update the user’s informations in the GLPI database ?
	yes
	True

« provisioning_glpi » section

This section define a way to do the user provisioning from glpi.

Available options for the “provisioning_glpi” section:

	Option name
	Description
	Optional
	Default value

	exclude
	users that are never going to be provisioned
	yes
	root

	profile_acl_profileX
	MMC web interface ACLs definition according to the user GLPI profile
	yes
	:##:base#main#default

	profile_order
	If the user belong to more than one profile, the first profile of this list will be used
	yes
	profile1 profile2 profile3

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

MMC imaging plugin configuration file

This document explains the content of the MMC imaging
plugin configuration file.

Introduction

The « imaging » plugin is the MMC agent plugin that allows
to manage all imaging related data.

The plugin configuration file is
/etc/mmc/plugins/imaging.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a
« [sectionname] » header. In each section options can be defined like
this: « option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now three sections are available in this configuration
file:

	Section name
	Description
	Optional

	main
	Mostly MMC related behaviors
	no

	database
	Imaging database related options
	no

	imaging
	Default values for the MMC web imaging plugin
	no

« main » section

This section is used to give directives to the MMC agent.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Whenever use this plugin (or not)
	no
	0

« database » section

This section defines how to connect to the imaging database.

Available options for the “database” section:

	Option name
	Description
	Optional
	Default value

	dbdriver
	DB driver to use
	no
	mysql

	dbhost
	Host which hosts the DB
	no
	127.0.0.1

	dbport
	Port on which to connect to reach the DB
	yes
	3306 (aka “default MySQL port”)

	dbname
	DB name
	no
	imaging

	dbuser
	Username to use to connect to the DB
	no
	mmc

	dbpasswd
	Password to use to connect to the DB
	no
	mmc

	dbpoolrecycle
	This setting causes the pool to recycle connections after the given number of seconds has passed
	yes
	60

	dbpoolsize
	The number of connections to keep open inside the connection pool
	yes
	5

	dbsslenable
	SSL connection to the database
	yes
	0

	dbsslca
	CA certificate for SSL connection
	yes
	

	dbsslcert
	Public key certificate for SSL connection
	yes
	

	dbsslkey
	Private key certificate for SSL connection
	yes
	

« imaging » section

This section defines default values to use in the MMC web
interface in imaging related page.

Available options for the “imaging” section:

	Option name
	Description
	Optional
	Default value

	web_def_date_fmt
	Date format to use (see http://www.php.net/date for more informations)
	yes
	“%Y-%m-%d %H:%M:%S”

	web_def_default_protocol
	Network protocol to use for image restoration
	yes
	nfs

	web_def_default_menu_name
	Boot menu name
	yes
	Menu

	web_def_default_timeout
	Boot menu timeout in seconds
	yes
	60

	web_def_default_background_uri
	Boot menu background
	yes
	

	web_def_default_message
	Boot menu message
	yes
	Warning ! Your PC is being backed up or restored. Do not reboot !

	web_def_kernel_parameters
	Kernel parameters
	yes
	quiet

	web_def_image_parameters
	Image parameters
	yes
	

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

Pulse 2 Imaging Server configuration file

This document explains the content of the configuration file of the imaging
server service from Pulse 2.

Introduction

The « imaging server » service is the Pulse 2 daemon in charge of managing
backup folder on the server, based on the clients needs.

The service configuration file is /etc/mmc/pulse2/imaging-server/imaging-server.ini.

Like all Pulse 2 related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now four sections are available in this configuration file.
The section describing the option can be duplicated if you need to pass
more than one kind of option to the OCS inventory agent.

	Section name
	Description
	Optional

	main
	Common imaging server configuration directives
	no

	daemon
	Imaging server daemon related behaviors
	no

	helpers
	Imaging server hooks
	no

	logger
	Logging setting
	no

« main » section

This section is used to configure the imaging server services.

Available options for the “main” section:

	Option name
	Description
	Optional
	Type
	Default value

	adminpass
	The password to be used when subscibing to this Pulse 2 server.
	no
	string
	mandriva

	base_folder
	Where the images will be recorded
	no
	path
	/var/lib/pulse2/imaging

	host
	The IP address on which the server will listen
	no
	string
	0.0.0.0

	netboot_folder
	Where the PXE elements will be taken from
	no
	path
	/var/lib/tftpboot/pulse2

	port
	The port on which the server will listen.
	no
	int
	1001

	skel_folder
	Where the original image template will be taken from
	no
	path
	/usr/lib/pulse2/imaging/skel

« daemon » section

This section sets the imaging service run-time options and privileges.

Available options for the “daemon” section:

	Option name
	Description
	Optional
	Type
	Default value

	group
	The inventory service runs as this specified group.
	no
	string
	root

	pidfile
	The inventory service store its PID in the given file.
	no
	path
	/var/run/pulse2-imaging-server.pid

	umask
	The inventory service umask defines the right of the new files it creates (log files for example).
	no
	octal
	0077

	user
	The inventory service runs as this specified user.
	no
	string
	root

« helpers » section

This section sets the imaging service hooks.

Available options for the “daemon” section:

	Option name
	Description
	Optional
	Type
	Default value

	client_add_path
	The client_add script path
	no
	path
	/usr/lib/pulse2/imaging/helpers/check_add_host

	client_remove_path
	The client_remove script path
	no
	path
	/usr/lib/pulse2/imaging/helpers/check_remove_host

	client_inventory_path
	The client_inventory_path script path
	no
	path
	/usr/lib/pulse2/imaging/helpers/info

	menu_reset_path
	The menu_reset_path script path
	no
	path
	/usr/lib/pulse2/imaging/helpers/set_default

	menu_update_path
	The menu_update_path script path
	no
	path
	/usr/lib/pulse2/imaging/helpers/update_menu

	storage_create_path
	The storage_create_path script path
	no
	path
	/usr/lib/pulse2/imaging/helpers/create_config

	storage_update_path
	The storage_update_path script path
	no
	path
	/usr/lib/pulse2/imaging/helpers/update_dir

« logger » section

This section sets the logging system.

Available options for the “daemon” section:

	Option name
	Description
	Optional
	Type
	Default value

	log_file_path
	The log path
	no
	path
	/var/log/mmc/pulse2-imaging-server.log

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

MMC inventory plugin configuration file

This document explains the content of the MMC inventory
plugin configuration file.

Introduction

The « inventory » plugin is the MMC plugin in charge displaying the content
of the inventory database, and providing facilities for dynamic group creation.

The plugin configuration file is /etc/mmc/plugins/inventory.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a
«[sectionname] »header. In each section options can be defined like
this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Available sections in this configuration file:

	Section name
	Description
	Optional

	main
	Mostly MMC related behaviors
	no

	inventory
	Inventory related options
	no

	computer
	Computers list’s display content
	no

	expert_mode
	Select which columns are only shown in expert mode
	no

	graph
	Select which columns can be graphed
	no

	querymanager
	Describe which part of the inventory is going to be queryable for the dyngroup plugin
	yes

	provisioning_inventory
	Define the rules of provisioning of users from the inventory
	yes

« main » section

This section is used to give directives to the MMC agent.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Whenever use this plugin (or not)
	no
	0

	software_filter
	Allows to exclude softwares in the inventory software views according to their names, using a SQL expression. For example: %KB% allows to filter all softwares containing KB in their name. Multiple filters can be set using commas.
	yes
	

« inventory » section

This section defines some global options.

Available options for the “inventory” section:

	Option name
	Description
	Optional
	Default value

	dbdriver
	DB driver to use
	no
	mysql

	dbhost
	Host which hosts the DB
	no
	127.0.0.1

	dbport
	Port on which to connect to reach the DB
	yes
	3306 (aka “default MySQL port”)

	dbname
	DB name
	no
	inventory

	dbuser
	Username to give while conencting to the DB
	no
	mmc

	dbpasswd
	Password to give while connecting to the DB
	no
	mmc

	dbpoolrecycle
	This setting causes the pool to recycle connections after the given number of seconds has passed
	yes
	60

	dbpoolsize
	The number of connections to keep open inside the connection pool
	yes
	5

	dbsslenable
	SSL connection to the database
	yes
	0

	dbsslca
	CA certificate for SSL connection
	yes
	

	dbsslcert
	Public key certificate for SSL connection
	yes
	

	dbsslkey
	Private key certificate for SSL connection
	yes
	

« computer » section

This section define what kind of informations will be displayed in
computers list.

Available options for the “computer” section:

	Option name
	Description
	Optional
	Default value

	content
	List of additional parameters for the Computer object
	yes
	cn::Computer Name||displayName||Description

	display
	List of parameters that will be displayed in computers list
	yes
	“”

For exemple :

[computers]
content = Registry::Value::regdn::Path==DisplayName||Registry::Value::srvcomment::Path==srvcomment
display = cn::Computer Name||displayName::Description||srvcomment::Name||regdn::Display Name

« expert_mode » section

This section defined columns that will be only displayed when in
expert mode.

Available options for the “expert_mode” section:

	Option name
	Description
	Optional
	Default value

	<Table name>
	List of column in this Sql table that won’t be displayed in normal mode
	yes
	“”

« graph » section

This section defined columns on which we will be able to draw graphs.

Available options for the “graph” section:

	Option name
	Description
	Optional
	Default value

	<Table name>
	List of column in this Sql table we will be able to draw
	yes
	“”

« querymanager » section

This section defined columns that are going to be queryable to
create groups from the dyngroup plugin.

Available options for the “querymanager” section:

	Option name
	Description
	Optional
	Default value

	list
	List of simple columns to query
	yes
	Entity/Label||Software/ProductName||Hardware/ProcessorType||Hardware/OperatingSystem||Drive/TotalSpace

	double
	List of double columns to query (for exemple a software AND it’s version)
	yes
	Software/Products::Software/ProductName##Software/ProductVersion

	halfstatic
	List of columns to query with an hidden setted double columns (for exemple software KNOWING THAT version = 3)
	yes
	Registry/Value/display name::Path##DisplayName

The separator to use between two entries is ||

List is a list of Table/Column that can be queryed as it.

Double is composed like that : NAME::Table1/Column1##Table2/Column2,
knowing that name MUST start by the mysql table name plus the char ‘/’.
It’s generaly used for having a AND on the same entry in a table (all
machines having the software X and the version Y is not the same as all
machines having the software X at the version Y)

Halfstatic is a list of Table/Column1/name
complement::Column2##Value2, where the choices are on the column Column1
in the table Table where Column2 == Value2. The name complement is just to
display purpose.

« provisioning_inventory » section

This section defines some configuration directives for user
provisioning with the inventory database. It allows to set access rights
for users to the entities of the inventory database.

To enable the inventory provisioning system, you have to set this in
/etc/mmc/plugins/base.ini:

[provisioning]
method = inventory
Multiple provisining method can be used, for example:
method = externalldap inventory

Available options for the “provisioning_inventory” section:

	Option name
	Description
	Optional
	Default value

	exclude
	space-separated list of login that won’t be provisioned by this provisioner.
	yes
	

	profile_attr
	LDAP user attribute that is used to get the user profile
	yes
	

	profile_entity_x
	Space-separated list of entities assigned to the user profile “x”. See the example below for more information
	yes
	

If the entity does not exist, it is created automatically in the
database, as a child of the root entity (the root entity always
exists).

For example:

[provisioning_inventory]
exclude = root
profile_attr = pulse2profile
profile_entity_admin = .
profile_entity_agent = entityA entityB
profile_entity_tech = %pulse2entity%
profile_entity_manager = plugin:network_to_entity
profile_entity_none =
profile_entity_default = entityA

In this example, the root user is never provisioned. The LDAP
attribute used to get the user profile is called “pulse2profile”.

The users with the “admin” profile are linked to the root entity,
which is represented by the dot character. These users have access the
root entity and all its sub-entities.

The users with the “agent” profile are linked to both entities
“entityA” and “entityB” character. These users have access to entities
“entityA” and “entityB”, and all their sub-entities.

The users with the “tech” profile are linked to entities defined in
the “pulse2entity” LDAP attribute values of these users.

The users with the “manager” profile are linked to entities computed
by the “network_to_entity” provisioning plugin. See the next sub-section
for more informations.

The users with the “none” profile are linked to no entity.

The users with no profile (the pulse2profile field is empty or don’t
exist) or with none of the profiles described in the configuration
file are set to the “default” profile (be carefull, default is now a
keyword).

« network_to_entity » plugin

This plugin for the inventory provisioning system allows to link
users to entities according to their IP when connecting to the MMC web
interface.

The IP address of the user is determined by the Apache server
running the MMC web interface thanks to the remote address of the HTTP
connection. Then this IP address is forwarded to the MMC agent when
authenticating and provisioning the user.

The IP address to entities mapping is done thanks to a rules file,
similar to the one used by the inventory server to affect a computer
inventory to an entity.

The rules file must be called
/etc/mmc/plugins/provisioning-inventory. There is
now to specify an alternate rules file.

Here is an example of rules file:

entityA ip match ^192\\.168\\.1\\..*$
entityB,entityC ip match ^192\\.168\\.0\\.19$
. ip match ^.*$

Each line of the rules file is processing starting from the top of
the file, until one rule is valid. The user IP address is matched
against a regular expression. If no rule match, the user is linked to no
entity.

The first line links users connecting from the 192.168.1.0/24 to
the entity called “entityA”.

The second line links users connecting from the IP address
192.168.0.19 to the entities called “entityB” and “entityC”.

The third line is a kind of catch-all rule.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

Pulse 2 Inventory server configuration file

This document explains the content of the configuration file of the inventory
server service from Pulse 2.

Introduction

The « inventory server » service is the Pulse 2 daemon in charge importing
inventory sent from ocs inventory agents.

The service configuration file is
/etc/mmc/pulse2/inventory-server/inventory-server.ini.

Like all Pulse 2 related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now four sections are available in this configuration file. The section
describing the option can be duplicated if you need to pass more than one kind
of option to the OCS inventory agent.

	Section name
	Description
	Optional

	main
	Common inventory server configuration directives
	no

	database
	Database connection parameters
	no

	daemon
	Inventory server daemon related behaviors
	no

	option_XXX
	Inventory agent option XXX
	yes

All the other sections (loggers, handlers, ...) are related to Python language
logging framework. See http://docs.python.org/lib/logging-config-fileformat.html.

« main » section

This section is used to configure the inventory server service.

Available options for the “main” section:

	Option name
	Description
	Optional
	Type
	Default value

	host
	The hostname or ip address where the inventory.
	yes
	string
	localhost

	port
	The port on which the inventory listen.
	yes
	int
	9999

	ocsmapping
	The mapping file betwen ocs inventory agent xml output and the database schema
	yes
	path
	/etc/mmc/pulse2/inventory-server/OcsNGMap.xml

	xmlfixplugindir
	Directory containing Python scripts to fix the xml inventory before injecting
	yes
	path
	/etc/mmc/pulse2/inventory-server/xml-fix

	enablessl
	SSL mode support
	yes
	boolean
	False

	verifypeer
	use SSL certificates
	yes
	boolean
	False

	cacert
	path to the certificate file describing the certificate authority of the SSL server
	yes
	path
	/etc/mmc/pulse2/inventory-server/keys/cacert.pem

	localcert
	path to the SSL server private certificate
	yes
	path
	/etc/mmc/pulse2/inventory-server/keys/privkey.pem

	hostname
	allow hostname in incoming inventory to be overridden by an other information from the inventory, for exemple Registry/Value|Path:DisplayName .
	yes
	string
	Hardware/Name

	default_entity
	Default entity where computers are stored
	yes
	string
	”.” (root entity)

	entities_rules_file
	Rules file defining computer to entity mappings. See specific section to learn how it works.
	yes
	path
	“” (no mapping)

The hostname option is a representation of the path in the inventory XML.

« database » section

This section is documented into the MSC inventory plugin configuration
documentation (see section « inventory » section).

« daemon » section

This section sets the inventory service run-time options and privileges.

Available options for the “daemon” section:

	Option name
	Description
	Optional
	Type
	Default value

	pidfile
	The inventory service store its PID in the given file.
	yes
	path
	/var/run/pulse2-inventoryserver.pid

	user
	The inventory service runs as this specified user.
	yes
	string
	root

	group
	The inventory service runs as this specified group.
	yes
	string (can be base64 encoded)
	root

	umask
	The inventory service umask defines the right of the new files it creates (log files for example).
	yes
	octal
	0077

« option_XXX » section

This section define options that has to be given to the ocs inventory agent.

At the moment the only option which return will be inserted in the database
is REGISTRY.

Each PARAM_YYY is for an XML tag PARAM in the inventory request. It is made
of two values separated by ##. The first value is PARAM XML attributes, the
second one is the content of the PARAM XML tag. The attributes are a list of
couple attribute name, attribute value, the name and the value are separated
by ::, each couple is separated by ||.

Available options for the option_XXX section:

	Option name
	Description
	Optional
	Type
	Default value

	NAME
	The option name.
	no
	string
	

	PARAM_YYY
	The option params.
	yes
	string
	

For example :

[option_01]
NAME = REGISTRY
PARAM_01 = NAME::srvcomment||REGKEY::SYSTEM\\CurrentControlSet\\Services\\lanmanserver\\parameters||REGTREE::2##srvcomment
PARAM_02 = NAME::DisplayName||REGKEY::SYSTEM\\CurrentControlSet\\Services\\lanmanserver||REGTREE::2##DisplayName

Rules file for computer to entity mapping

This file defines a set of rules to assign a computer to an entity according
to its inventory content.

Each line of the rules file is processing starting from the top of the file,
until one rule is valid. When a rule matches, the processing stop, and the
computer is linked to the entity. If no rule match, the user is linked to no
entity.

If no rule matches, the computer is assigned to the default entity. If the
entity does not exist, it is created automatically in the database, as a child
of the root entity (the root entity always exists).

This file is made of four or more columns. Each column is separated by space or
tab characters.

	The first column is the entity that will be assigned to the computer if the
rule is valid. The root entity is specified by the dot character.

	The second column is the inventory component value that will be tested by the
rule. This component is made of the name of an inventory table, the “/”
character, and a column of this table. For example: Network/IP,
Bios/ChipVendor, ... The OcsNGMap.xml file can also be used to get
the available inventory component value.

	The third column is the operator of the rules. For the moment, only the
“match” operator is available. The “match” operator allows to test the
inventory component value with a regexp.

	The fourth column is a value that will be used by the operator. For the
“match” operator, the value must be a regular expression.

For example:

. Network/IP match ^192\\.168\\.0\\..*$
"entity A" Network/IP match ^172\\.16\\..*$
entityB Network/IP match ^10\\..*$ and Hardware/OperatingSystem match ^Linux$

The first line links all computers with an IP address starting with 192.168.0.
(network 192.168.0.0/24) to the inventory root entity.

The second line links all computers with an IP address starting with 172.16.
(network 172.16.0.0/24) to the entity called “entity A”. Entity name can be
written between double-quotes if they contains space characters in their name.

The third line links all computers with an IP address starting with “10.”
(network 10.0.0.0/8) and with the “Linux” OS to the entity called entityB.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

Pulse 2 Launcher configuration file

This document explains the content of the configuration file of the launcher
service from Pulse 2.

Introduction

The « Launcher » service is the Pulse 2 daemon in charge of doing jobs on
clients on scheduler orders.

The service configuration file is /etc/mmc/pulse2/launchers.ini
(please note the ending “s”).

Like all Pulse 2 related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Some sections describing the different available launchers may appear, their
name must begin with launcher_. The idea behind this is that the main
section controls the common behavior of launchers, the others control the
specific behaviors.

	Section name
	Description
	Optional

	launchers
	Common launchers configuration directives
	yes

	wrapper
	wrapper related options
	yes

	ssh
	ssh modus-operandi related section
	yes

	daemon
	Launchers services related behaviors
	yes

	wol
	WOL related behaviors
	yes

	wget
	Wget related options
	yes

	tcp_sproxy
	Wget related options
	yes

	smart_cleaner
	Smart cleaning options
	yes

	scheduler_XXX
	Referent scheduler location
	no

	launcher_XXX
	Configuration for launcher_XXX
	no

All the other sections (loggers, handlers, ...) are related to Python language
logging framework. See http://docs.python.org/lib/logging-config-fileformat.html.

« launchers » section

This section is used to give directives common to every launcher service.

Available options for the “launchers” section:

	Option name
	Description
	Optional
	Type
	Default value

	halt_command
	The halt command to use on a client, after a successful deployment.
	yes
	string
	/bin/shutdown.exe -f -s 1 || shutdown -h now

	inventory_command
	The inventory command to use on a client, after a successful deployment.
	yes
	string
	export P2SRV=`echo $SSH_CONNECTION | cut -f1 -d; export P2PORT=9999; export http_proxy=””; export ftp_proxy=””; ([-x /cygdrive/c/ProgramFiles/FusionInventory-Agent/perl/bin/fusioninventory-agent] && /cygdrive/c/ProgramFiles/FusionInventory-Agent/perl/bin/perl “C:Program FilesFusionInventory-Agentperl\bin\fusioninventory-agent” /server=http://P2SRV:$P2PORT) || ([-x /cygdrive/c/ProgramFiles(x86)/FusionInventory-Agent/perl/bin/fusioninventory-agent] && /cygdrive/c/ProgramFiles(x86)/FusionInventory-Agent/perl/bin/perl “C:Program Files (x86)FusionInventory-Agentperl\bin\fusioninventory-agent” /server=http://P2SRV:$P2PORT) || ([-x /cygdrive/c/ProgramFiles/OCSInventoryAgent/OCSInventory.exe] && /cygdrive/c/ProgramFiles/OCSInventoryAgent/OCSInventory.exe /np /server:$P2SRV /pnum:$P2PORT) || ([-x /cygdrive/c/ProgramFiles(x86)/OCSInventoryAgent/OCSInventory.exe] && /cygdrive/c/ProgramFiles(x86)/OCSInventoryAgent/OCSInventory.exe /np /server:$P2SRV /pnum:$P2PORT) || ([-x /usr/bin/ocsinventory-agent] && /usr/bin/ocsinventory-agent –server=http://$P2SRV:$P2PORT) || ([-x /usr/sbin/ocsinventory-agent] && /usr/sbin/ocsinventory-agent –server=http://$P2SRV:$P2PORT) || ([-x /usr/local/sbin/ocs_mac_agent.php] && /usr/local/sbin/ocs_mac_agent.php)`

	launcher_path
	The Launcher main script location, used by launchers-manager to start and daemonize the services.
	yes
	path
	/usr/sbin/pulse2-launcher

	max_command_age
	The parameter which limits a command’s time lenght. A command must take less than this value (in seconds), or being killed; High values mean that the command will have more time to complete, thus may also stay blocked longer. Only works for ASYNC commands.
	yes
	int, seconds
	86400 (one day)

	max_ping_time
	Timeout when attempting to ping a client: A ping is aborded if it takes more that this value (in seconds). High values will minimize false-positives (aborded probe even if the client if obviously reachable). Lower values will enhance interface reponse time (but lead to more false-positives).
	yes
	int, seconds
	4 (seconds)

	max_probe_time
	Timeout when attempting to probe a client: A probe is aborded if it takes more that this value (in seconds). High values will minimize false-positives (aborded probe even if the client if obviously reachable). Lower values will enhance interface reponse time (but lead to more false-positives). Please note that even if the client is not far (less than 10 ms), the probe may last a very long ime as sshd perform a reverse DNS query for each incoming connection, which may be problematic with a badly configured DNS.
	yes
	int, seconds
	20 (seconds)

	ping_path
	Path to Pulse 2 Ping tool
	yes
	path
	/usr/sbin/pulse2-ping

	reboot_command
	The reboot command to use on a client, after a successful deployment.
	yes
	string
	/bin/shutdown.exe -f -r 1 || shutdown -r now

	source_path
	Packages source path target path (used for upload purpose).
	yes
	path
	/var/lib/pulse2/packages

	target_path
	Client target path (used for upload purpose).
	yes
	path
	/tmp

	temp_folder_prefix
	During a deployment, if a folder has to be created, its name will begin by this string.
	yes
	string
	MDVPLS

« daemon » section

This section sets the pulse2-launchers-manager and pulse2-launchers service
run-time options and privileges.

Available options for the “daemon” section:

	Option name
	Description
	Optional
	Type
	Default value

	group
	The pulse2-launchers-manager and pulse2-launchers services run as this specified group.
	yes
	group
	root

	pidfile
	The launcher services PID, used by pulse2-launchers-manager to track the launchers services.
	yes
	path
	/var/run/pulse2

	umask
	The pulse2-launchers-manager and pulse2-launchers services umask defines the right of the new files they create (log files for example).
	yes
	octal
	0077

	user
	The pulse2-launchers-manager and pulse2-launchers service run as this specified user.
	yes
	user
	root

« wrapper » section

This section define the wrapper behavior.

Available options for the “wrapper” section:

	Option name
	Description
	Optional
	Type
	Default value

	max_exec_time
	Default max exec time in seconds, older process are killed using SIGKILL. Different from max_command_age as beeing handled by the wrapper itself, so it also works for SYNC commandS.
	yes
	int, in seconds
	21600 (6 hours)

	max_log_size
	Cap generated logs to this value
	yes
	int, in bytes
	512000 (500 kB)

	path
	Pulse 2 launcher wrapper (ie “job launcher”) location.
	yes
	path
	/usr/sbin/pulse2-output-wrapper

« ssh » section

This section define global ssh (and scp) options.

Available options for the “ssh” section:

	Option name
	Description
	Optional
	Type
	Default value

	default_key
	The default SSHv2 key to use, the config code will look for an “ssh_<default_key>” entry in the config file. ssh_* are ssh keys, * her names, f.ex. by using sshkey_default = /root/.ssh/id_rsa, /root/.ssh/id_rsa will be known as the ‘default’ key.
	yes
	string
	default

	forward_key
	Should we perform key-forwarding (never, always, or let = let the scheduler take its decision)
	yes
	string
	let

	scp_path
	Path to the SCP binary
	yes
	string
	/usr/bin/scp

	ssh_options
	Options passed to OpenSSH binary (-o option).
	yes
	list of space separated strings
	LogLevel=ERROR UserKnownHostsFile=/dev/null StrictHostKeyChecking=no Batchmode=yes PasswordAuthentication=no ServerAliveInterval=10 CheckHostIP=no ConnectTimeout=10

	ssh_agent_path
	Path to the SSH agent
	yes
	string
	/usr/bin/ssh-agent

	ssh_path
	Path to the SSH binary
	yes
	string
	/usr/bin/ssh

	sshkey_default
	The “default” ssh key path.
	yes
	path
	/root/.ssh/id_rsa

	sshkey_XXXX
	The “XXXX” ssh key path (when more than one key may be used).
	yes
	string
	

« wget » section

This section sets the pulse2-launchers wget options
(for the pull part of the push/pull mode)

Available options for the “wget” section:

	Option name
	Description
	Optional
	Type
	Default value

	check_certs
	Put the check certificate flag.
	yes
	boolean
	False

	resume
	Attempt to resume a partialy completed transfert
	yes
	boolean
	True

	wget_options
	Options passed to wget binary.
	yes
	string
	“”

	wget_path
	wget binary path (on client)
	yes
	string
	/usr/bin/wget

« rsync » section

This section sets the pulse2-launchers rsync options (for the push mode)

Available options for the “rsync” section:

	Option name
	Description
	Optional
	Type
	Default value

	resume
	Attempt to resume a partial completed transfert
	yes
	boolean
	True

	rsync_path
	rsync binary path (on server)
	yes
	string
	/usr/bin/rsync

	set_executable
	Do we force +/-X on uploaded files (yes/no/keep). See below.
	yes
	string
	yes

	set_access
	Do we enforce permissions of uploaded files (private/restricted/public). See below.
	yes
	string
	private

Uploaded file permissions:

	set_access \ set_executable
	yes
	no
	keep

	private
	u=rwx,g=,o=
	u=rw,g=,o=
	u=rwX,g=,o=

	restricted
	u=rwx,g=rx,o=
	u=rw,g=r,o=
	u=rwX,g=rX,o=

	public
	u=rwx,g=rwx,o=rx
	u=rw,g=rw,o=r
	u=rwX,g=rwX,o=rX

« wol » section

This section sets the wol feature handling.

Available options for the “wol” section:

	Option name
	Description
	Optional
	Type
	Default value

	wol_bcast
	WOL IP BCast adress.
	yes
	string
	255.255.255.255

	wol_path
	Pulse 2 scheduler awaker (via WOL “magic packet”).
	yes
	path
	/usr/sbin/pulse2-wol

	wol_port
	WOL TCP port.
	yes
	string
	40000

« tcp_sproxy » section

This section sets the tcp_sproxy feature handling, mainly used by the VNC feature.

Available options for the “tcp_sproxy” section:

	Option name
	Description
	Optional
	Type
	Default value

	tcp_sproxy_path
	Pulse 2 TCP Secure Proxy (woot !) path
	yes
	path
	/usr/sbin/pulse2-tcp-sproxy

	tcp_sproxy_host
	Fill-in the following option if you plan to use VNC, it will be the “external” IP from the VNC client point-of-view
	yes
	string
	“”

	tcp_sproxy_port_range
	The proxy uses a port range to establish proxy to the client: 2 ports used per connection
	yes
	int range
	8100-8200

	tcp_sproxy_establish_delay
	The initial ssh connection to the client timeout
	yes
	seconds
	20

	tcp_sproxy_connect_delay
	The proxy allow the initial connection to be established within N seconds (ie. a client as N seconds to connect to the proxy after a port has bee found, then the connection is dropped and further connections will be impossible
	yes
	seconds
	60

	tcp_sproxy_session_lenght
	The number of seconds a connection will stay open after the initial handshake, conenction will be closed after this delay even if still in use
	yes
	seconds
	3600 (one hour)

« smart_cleaner » section

This section sets the wol feature handling.

Available options for the “wol” section:

	Option name
	Description
	Optional
	Type
	Default value

	smart_cleaner_path
	Pulse 2 smart cleaner path (on client), not used if empty
	yes
	path
	/usr/bin/pulse2-smart-cleaner.sh

	smart_cleaner_options
	Pulse 2 smart cleaner option (see win32 agent doc)
	yes
	array, space-separated
	‘’

« scheduler_XXX » section

This section define how the launchers may reach their referent scheduler.

Available options for the “scheduler” section:

	Option name
	Description
	Optional
	Type
	Default value

	awake_incertitude_factor
	As our awake_time can be the same that the scheduler awake_time, add a little randomness here. Default value is .2, ie +/- 20 %. For example we will awake every 10 minutes, more or less 2 minutes. Values lower than 0 or greater than .5 are rejected Use this if your scheduler has the same awake time and busy each time we have to send our results
	yes
	float
	.2

	awake_time
	The launcher will periodicaly awake (for exemple to send results to is scheduler), with this key a specific periodicity can be given. Field unit is the “second”.
	yes
	int
	600

	defer_results
	In async mode, whenever immedialetly send results to referent scheduler upon job completion or wait for being waked up (see above)
	yes
	string
	no

	enablessl
	Flag that tells if SSL should be used to connect to the scheduler
	yes
	boolean
	True

	host
	The referent scheduler IP address
	yes
	string
	127.0.0.1

	password
	The password to use when authenticating vs our referent scheduler
	yes
	string or base64
	password

	port
	The referent scheduler TCP port
	yes
	string
	8000

	username
	The login name to use when authenticating vs our referent scheduler
	yes
	string
	username

« launcher_XXX » section

This section define specific options for all launchers on the server.

Available options for the “launcher_XXX” section:

	Option name
	Description
	Optional
	Type
	Default value

	bind
	The launcher binding IP address.
	yes
	string
	127.0.0.1

	cacert
	path to the certificate file describing the certificate authority of the SSL server
	no if enablessl is set
	path
	/etc/mmc/pulse2/scheduler/keys/cacert.pem

	certfile
	deprecated (see cacert)
	
	
	

	enablessl
	SSL mode support
	no
	boolean
	1

	localcert
	path to the SSL serverprivate certificate
	no if enablessl is set
	path
	/etc/mmc/pulse2/scheduler/keys/privkey.pem

	password
	The password to use when authenticating vs this launcher
	yes
	string or base64
	password

	port
	The launcher binding TCP port.
	no
	int
	

	privkey
	deprecated (see localcert)
	
	
	

	slots
	The number of available slots (ie. maximum number of concurrent jobs)
	yes
	int
	300

	scheduler
	The referent scheduler
	yes
	string
	the first defined scheduler

	username
	The login name to use when authenticating vs this launcher
	yes
	string
	username

	verifypeer
	Check that our parent scheduler present a signed certificate
	no if enablessl is set
	boolean
	False

	logconffile
	path to the file containing the logging configuration of this launcher (the format of this file is described in the Python documentation [http://docs.python.org/library/logging.html#configuration-file-format]. If it is not set, the default logging configuration is read from the launchers.ini file.
	yes
	string
	

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

MMC MSC plugin configuration file

This document explains the content of the MMC MSC plugin configuration file.

Introduction

The « MSC » plugin is the MMC plugin in charge of recording commands in the
MSC database, and gathering results from the database.

The plugin configuration file is /etc/mmc/plugins/msc.ini.

Like all MMC related configuration file, its file format is INI style. The
file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now five sections are available in this configuration file:

	Section name
	Description
	Optional

	main
	Mostly MMC related behaviors
	yes

	msc
	MSC related options
	yes

	web
	Web interface default options
	yes

	package_api
	Describe how to reach the API package service
	yes

	schedulers
	Describe how to reach the different MSC Schedulers
	yes

« main » section

This section is used to give directives to the MMC agent.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Whenever use this plugin (or not)
	yes
	1

« msc » section

This section defines some global options.

Available options for the “msc” section:

	Option name
	Description
	Optional
	Default value

	qactionpath
	Folder from where Quick Action scripts are tacken
	yes
	/var/lib/pulse2/qactions

	repopath
	Folder from where packages will be copied (push mode)
	yes
	/var/lib/pulse2/packages

	dbdriver
	DB driver to use
	yes
	mysql

	dbhost
	Host which hosts the DB
	yes
	127.0.0.1

	dbport
	Port on which to connect to reach the DB
	yes
	3306 (aka “default MySQL port”)

	dbname
	DB name
	yes
	msc

	dbuser
	Username to give while conencting to the DB
	yes
	msc

	dbpasswd
	Password to give while connecting to the DB
	yes
	msc

	dbdebug
	Whenever log DB related exchanges
	yes
	ERROR

	dbpoolrecycle
	DB connection time-to-live
	yes
	60 (seconds)

	default scheduler
	default scheduler to use
	yes
	

	ignore_non_rfc2780
	Enable filter for non unicast IP addresses when inserting computers IP address in MSC database
	yes
	1

	ignore_non_rfc1918
	Enable filter for non private IP addresses when inserting computers IP address in MSC database
	yes
	0

	exclude_ipaddr
	Enable filter made of comma separated values with filtered ip addresses or network ranges, used when inserting computers IP address in MSC database. For example: exclude_ipaddr = 192.168.0.1,10.0.0.0/10.255.255.255
	yes
	

	include_ipaddr
	Disable filter made of comma separated values with accepted ip addresses or network ranges, used when inserting computers IP address in MSC database. The IP addresses matching this filter are always accepted and never take out by the other filters. For example: include_ipaddr = 192.168.0.1,10.0.0.0/10.255.255.255
	yes
	

	ignore_non_fqdn
	Enable filter for host name that are not FQDN. If filtered, the host name won’t be used by the scheduler to find the target IP address
	yes
	0

	ignore_invalid_hostname
	Enable filter for host name that are invalid (that contains forbidden characters). If filtered, the host name won’t be used by the scheduler to find the target IP address.
	yes
	0

	exclude_hostname
	Enable filter for host name that are invalid if they match a regexp from this list of regexp. If filtered, the host name won’t be used by the scheduler to find the target IP address. For example: exclude_hostname = computer[0-9]* server[0-9]*
	yes
	

	include_hostname
	The host names matching at least one regexp from this list of regexp will never be filtered. For example: For example: include_hostname = computer[0-9]* server[0-9]*
	yes
	

	wol_macaddr_blacklist
	Space separated regexps to match MAC address to filter when inserting a target for a command into the database. For example: wol_macaddr_blacklist = 12:.* 00:.*
	yes
	

« scheduler_XXX » section

This section define available schedulers (one per scheduler,
“XXX” must be an integer).

Available options for the “scheduler_XXX” section:

	Option name
	Description
	Optional
	Default value

	host
	The scheduler IP address.
	yes
	127.0.0.1

	port
	The scheduler TCP port.
	yes
	8000

	enablessl
	Flag that tells if SSL should be used to connect to the scheduler
	yes
	1

	username
	The name to use when we send XMLRPC commands to this scheduler.
	yes
	username

	password
	The password to use when we send XMLRPC commands to this scheduler.
	yes
	password

By default, a scheduler is always defined:

[scheduler_01]
host=127.0.0.1
port=8000
username = username
password = password
enablessl = 1

« web » section

This section defined some default web fields.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	web_def_awake
	Check “Do WOL on client” ?
	yes
	1

	web_def_inventory
	Check “Do inventory on client” ?
	yes
	1

	web_def_mode
	Fill default package send mode
	yes
	push

	web_def_maxbw
	Fill default max usable bw
	yes
	0

	web_def_delay
	Fill delay between two attempts
	yes
	60

	web_def_attempts
	Fill max number of attempts
	yes
	3

	web_def_deployment_intervals
	Fill deployment time window
	yes
	

	web_dlpath
	Directory of target computers from which a file is download when a user perform the download file action in the computers list. If empty, the download file action is not available on the web interface.
	yes
	

	web_def_dlmaxbw
	Max bandwidth to use when download a file from a computer. Set to 0 by default. If set to 0, there is no bandwidth limit applied.
	yes
	0

	web_allow_local_proxy
	Possibility to use proxy mode for software deployment on groups
	yes
	True

	web_def_local_proxy_mode
	Default proxy mode, defaut “multiple”, other possible value “single”.
	yes
	multiple

	web_def_max_clients_per_proxy
	Max number of clients per proxy in proxy mode.
	yes
	10

	web_def_proxy_number
	Number of auto-selected proxy in semi-auto mode.
	yes
	2

	web_def_proxy_selection_mode
	Default mode (semi_auto / manual).
	yes
	semi_auto

	vnc_show_icon
	May the VNC applet used ? (this setting simply (en/dis)able the display of the VNC action button)
	yes
	True

	vnc_view_only
	Allow user to interact with remote desktop
	yes
	False

	vnc_network_connectivity
	Use a VNC client pre-defined rule
	yes
	lan

	vnc_allow_user_control
	Display applet control to user
	yes
	True

	vnc_port
	The port to use to connect to a VNC
	yes
	5900

Currently available profiles for VNC (vnc_network_connectivity):

	fiber: for high speed local networks (low latency, 10 Mb/s per connection)

	lan: for 100 Mb local networks (low latency, 3 Mb/s per connection)

	cable: for high-end broadband links (high latency, 400 kb/s per connection)

	dsl: for low-end broadband links (high latency, 120 kb/s per connection)

	isdn: (high latency, 75 kb/s)

« Client probing behavior »

The LED which represents the client status can take four colors:

	black: no probe done

	red: all probe failed

	orange: minimal probe succedeed (ping), maximal probe failed (ssh)

	green: all probe succedeed

Available probes are: none (field is empty), ping, ssh, ping_ssh (ie. both).

For networks where icmp is not allowed, ping may be disabled: probe_order=ssh

To speed-up display, ssh may be disabled: probe_order=ping

To fully disable probe: probe_order=

Default conf: none (empty)

« package_api » section

This section is used to tell to the plugin where to find its Package service.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	mserver
	The service IP address
	yes
	127.0.0.1

	mport
	The service TCP port
	yes
	9990

	mmountpoint
	The service path
	yes
	/rpc

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

Pulse 2 Package server configuration file

This document explains the content of the configuration file of the package
server service from Pulse 2.

Introduction

The « package server » service is the Pulse 2 daemon that implement all the
package apis, it permit the creation, edition, suppression, share,
mirroring... of packages.

The service configuration file is
/etc/mmc/pulse2/package-server/package-server.ini.

Like all Pulse 2 related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

The section describing the mirror, package_api_get or
package_api_put can be duplicated if you need to have more than one api of
this kind.

	Section name
	Description
	Optional

	main
	Common package server configuration directives
	no

	daemon
	Package server daemon related behaviors
	yes

	ssl
	Package server ssl related dehaviors
	yes

	mirror_api
	
	yes

	user_package_api
	
	yes

	scheduler_api
	
	yes

	imaging_api
	
	yes

	mirror:XX
	
	yes

	package_api_get:XX
	
	yes

	package_api_put:XX
	
	yes

All the other sections (loggers, handlers, ...) are related to Python language
logging framework. See http://docs.python.org/lib/logging-config-fileformat.html.

« main » section

This section is used to configure the inventory server services.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	host
	The hostname or ip address where the inventory.
	yes
	localhost

	port
	The port on which the inventory listen.
	yes
	9999

	use_iocp_reactor
	Windows XP, Windows 2003 and Windows 2008 only. This option sets the Twisted event loop to use the IOCP reactor for better performance. Please read Pulse 2 package server performance on win32 platforms
	yes
	0

	package_detect_activate
	Is package autodetection activated
	yes
	0

	package_detect_loop
	Time between two loops of detection
	yes
	60

	package_detect_smart_method
	methods in none, last_time_modification, check_size; for more than 1 method, separate with ”,”
	yes
	none

	package_detect_smart_time
	
	yes
	60

	package_mirror_loop
	
	yes
	5

	package_mirror_target
	Package api can synhronise package data to others servers; package synchronisation targets
	yes
	

	package_mirror_status_file
	package synchronisation state file. used only if package_mirror_target is defined. File where pending sync are written so that they can be finished on package server restart.
	yes
	/var/data/mmc/status

	package_mirror_command
	package synchronisation command to use
	yes
	/usr/bin/rsync

	package_mirror_command_options
	package synchronisation command options
	yes
	-ar –delete

	package_mirror_level0_command_options
	package synchronisation command on only one level options
	yes
	-d –delete

	package_mirror_command_options_ssh_options
	options passed to SSH via “-o” if specified –rsh is automatically added to package_mirror_command_options
	yes
	“”

	package_global_mirror_activate
	loop for the sync of the whole package directory; can only be activated when package_mirror_target is given
	yes
	1

	package_global_mirror_loop
	
	yes
	3600

	package_global_mirror_command_options
	
	yes
	-ar –delete

	real_package_deletion
	real package deletion
	yes
	1

	mm_assign_algo
	machine/mirror assign algo
	yes
	default

	up_assign_algo
	user/packageput assign algo
	yes
	default

package_mirror_command_options_ssh_options can be for exemple :

IdentityFile=/root/.ssh/id_rsa StrictHostKeyChecking=no Batchmode=yes PasswordAuthentication=no ServerAliveInterval=10 CheckHostIP=no ConnectTimeout=10

« daemon » section

This section sets the package server service run-time options and privileges.

Available options for the “daemon” section:

	Option name
	Description
	Optional
	Default value

	pidfile
	The package server service store its PID in the given file.
	yes
	/var/run/pulse2-package-server.pid

	user
	The inventory service runs as this specified user.
	yes
	root

	group
	The inventory service runs as this specified group.
	yes
	root

	umask
	The inventory service umask defines the right of the new files it creates (log files for example).
	yes
	0077

« ssl » section

Available options for the “ssl” section:

	Option name
	Description
	Optional
	Default value

	username
	
	yes
	“”

	password
	
	yes
	“”

	enablessl
	SSL mode support
	yes
	1

	verifypeer
	use SSL certificates
	yes
	0

	cacert
	path to the certificate file describing the certificate authority of the SSL server
	yes
	/etc/mmc/pulse2/package-server/keys/cacert.pem

	localcert
	path to the SSL server private certificate
	yes
	/etc/mmc/pulse2/package-server/keys/privkey.pem

« mirror_api » section

This section define options for the mirror_api api implementation
(it assign mirrors and package_api to machines).

Available options for the “mirror_api” section:

	Option name
	Description
	Optional
	Default value

	mount_point
	The api mount point
	no
	/rpc

« user_package_api » section

This section define options for the user_package_api api implementation
(it assign package_api to users, it’s used for the package edition permissions).

Available options for the “user_package_api” section:

	Option name
	Description
	Optional
	Default value

	mount_point
	The api mount point
	no
	/upaa

« scheduler_api » section

This section define options for the scheduler_api api implementation
(it assign a scheduler to each machine).

Available options for the “scheduler_api” section:

	Option name
	Description
	Optional
	Default value

	mount_point
	The api mount point
	no
	/scheduler_api

	schedulers
	The possible schedulers (can be a url or an id).
	no
	

« imaging_api » section

This section define options for the imaging API.

Available options for the “imaging_api” section:

	Option name
	Description
	Optional
	Default value

	mount_point
	The API mount point
	yes
	/imaging_api

	uuid
	The package server UUID. You can use the uuidgen command to compute one.
	no
	

	base_folder
	Base folder where Pulse 2 imaging sub directories are contained.
	yes
	/var/lib/pulse2/imaging

	bootloader_folder
	Where bootloader (and bootsplash) is stored, relative to “base_folder”
	yes
	bootloader

	cdrom_bootloader
	The CD-ROM boot loader file. It is used to create bootable restoration CD/DVD.
	yes
	cd_boot

	bootsplash_file
	The imaging menu (GRUB menu) backgroung image, in XPM format.
	yes
	bootsplash.xpm

	bootmenus_folder
	Where boot menus are generated / being served, relative to “base_folder”
	yes
	bootmenus

	diskless_folder
	Where kernel, initrd and other official diskless tools are stored, relative to “base_folder”
	yes
	diskless

	diskless_kernel
	Name of the diskless kernel to run, relative to “diskless_folder”
	yes
	kernel

	diskless_initrd
	Name of the diskless initrd to boot (core), relative to “diskless_folder”
	yes
	initrd

	diskless_initrdcd
	Name of the diskless initrd to boot (add on to boot on CD), relative to “diskless_folder”
	yes
	initrdcd

	diskless_memtest
	Diskless memtest too, relative to “diskless_folder”
	yes
	initrdcd

	diskless_dban
	Diskless dban too, relative to “diskless_folder”
	yes
	initrdcd

	inventories_folder
	Where inventories are stored / retrieved, relative to “base_folder”
	yes
	inventories

	computers_folder
	Where additionnal material (hdmap, exclude) are stored / retrieved, relative to “base_folder”
	yes
	computers

	masters_folder
	Where images are stored, relative to “base_folder”
	yes
	masters

	postinst_folder
	Where postinst tools are stored, relative to “base_folder”
	yes
	postinst

	archives_folder
	Will contain archived computer imaging data, relative to “base_folder”
	yes
	archives

	isos_folder
	Will contain generated ISO images
	yes
	/var/lib/pulse2/imaging/isos

	isogen_tool
	tool used to generate ISO file
	yes
	/usr/bin/mkisofs

	rpc_replay_file
	File contained in “base_folder” where failed XML-RPC calls from the package server to the central MMC agent are stored.
	yes
	rpc-replay.pck

	rpc_loop_timer
	RPC replay loop timer in seconds. The XML-RPC are sent again to the central MMC agent at each loop.
	yes
	60

	rpc_count
	RPC to replay at each loop.
	yes
	10

	rpc_interval
	Interval in seconds between two RPCs
	yes
	2

	uuid_cache_file
	Our UUID cache inside “base_folder”
	yes
	uuid-cache.txt

« mirror:XX » section

This section define options for the mirror api implementation.

Available options for the mirror:XX section:

	Option name
	Description
	Optional
	Default value

	mount_point
	The api mount point
	no
	

	src
	The root path of the package tree.
	no
	

« package_api_get:XX » section

This section define options for the package_api_get API implementation.

Available options for the package_api_get:XX section:

	Option name
	Description
	Optional
	Default value

	mount_point
	The api mount point
	no
	

	src
	The root path of the package tree.
	no
	

« package_api_put:XX » section

This section define options for the package_api_put API implementation.

Available options for the package_api_put:XX section:

	Option name
	Description
	Optional
	Default value

	mount_point
	The api mount point
	no
	/rpc

	src
	The root path of the package tree.
	no
	

	tmp_input_dir
	The directory where the data for package creation is put
	yes
	

Pulse 2 package server performance on win32 platforms

Using the default configuration, the service won’t accept more than
64 concurrent TCP connections. The default event loop used by the Python
Twisted library use the select() system call, which is limited to waiting on
64 sockets at a time on Windows.

Fortunately Twisted allows to choose another reactor instead of the default
select() one. If sets to 1 in the package server configuration file,
the use_iocp_reactor option lets Twisted runs with the IOCP reactor.
IOCP (IO completions Ports) is a fast and scalable event loop system available
on win32 platform. More informations are available in
the Twisted documentation [http://twistedmatrix.com/projects/core/documentation/howto/choosing-reactor.html].

But there are some limitations:

	SSL is not supported (for the moment) by the IOCP reactor, so the package
server can’t be run with IOCP and SSL enabled at the same time,

	The IOCP reactor implementation from Twisted only works on win32 platform
where the ConnectEx() API is available. So it won’t works on Windows NT
and Windows 2000 platforms.

Using the IOCP reactor, the package server can handle at least 300 parallel
TCP connections, but more benchmarks need to be done to guess its limits.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

MMC pkgs plugin configuration file

This document explains the content of the MMC pkgs plugin configuration file/

Introduction

The « pkgs » plugin is the MMC plugin in charge of the edition, removal and
creation of packages in the Pulse2 package system.

The plugin configuration file is /etc/mmc/plugins/pkgs.ini.

Like all MMC related configuration file, its file format is INI style. The file
is made of sections, each one starting with a «[sectionname] »header. In each
section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now two sections are available in this configuration file:

	Section name
	Description
	Optional

	main
	Mostly MMC related behaviors
	yes

	user_package_api
	Describe how to reach the User package API service
	yes

« main » section

This section is used to give directives to the MMC agent.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Whenever use this plugin (or not)
	yes
	0

« user_package_api » section

This section is used to tell to the plugin where to find its User Package API
service.

Available options for the “user_package_api” section:

	Option name
	Description
	Optional
	Default value

	server
	The service IP address
	yes
	127.0.0.1

	port
	The service TCP port
	yes
	9990

	mountpoint
	The service path
	yes
	/upaa

	username
	The name to use when we send XMLRPC call
	yes
	“”

	password
	The password to use when we send XMLRPC call
	yes
	“”

	enablessl
	SSL mode support
	yes
	1

	verifypeer
	use SSL certificates
	yes
	0

	cacert
	path to the certificate file describing the certificate authority of the SSL server
	yes
	“”

	localcert
	path to the SSL server private certificate
	yes
	“”

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

MMC pulse2 plugin configuration file

This document explains the content of the MMC pulse2 plugin
configuration file.

Introduction

The « pulse2 » plugin is the MMC plugin in charge of the very
generic part of pulse2 plugins.

The plugin configuration file is
/etc/mmc/plugins/pulse2.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a
«[sectionname] »header. In each section options can be defined like
this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

For now two sections are available in this configuration
file:

	Section name
	Description
	Optional

	main
	Mostly MMC related behaviors
	yes

	database
	Describe how to reach the pulse2 mysql database
	yes

« main » section

This section is used to give directives to the MMC agent.

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	disable
	Whenever use this plugin (or not)
	yes
	0

	location
	Set the name of the location manager (by default use the only component that can do that, ie the computer backend)
	yes
	

« database » section

This section defines some global options.

Available options for the “database” section:

	Option name
	Description
	Optional
	Default value

	dbdriver
	DB driver to use
	no
	mysql

	dbhost
	Host which hosts the DB
	no
	127.0.0.1

	dbport
	Port on which to connect to reach the DB
	yes
	3306 (aka “default MySQL port”)

	dbname
	DB name
	no
	pulse2

	dbuser
	Username to give while conencting to the DB
	no
	mmc

	dbpasswd
	Password to give while connecting to the DB
	no
	mmc

	dbpoolrecycle
	This setting causes the pool to recycle connections after the given number of seconds has passed
	yes
	60

	dbpoolsize
	The number of connections to keep open inside the connection pool
	yes
	5

	dbsslenable
	SSL connection to the database
	yes
	0

	dbsslca
	CA certificate for SSL connection
	yes
	

	dbsslcert
	Public key certificate for SSL connection
	yes
	

	dbsslkey
	Private key certificate for SSL connection
	yes
	

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Pulse 2

 	Configuration files

Pulse 2 Scheduler configuration file

This document explains the content of the configuration file of the scheduler
service from Pulse 2.

Introduction

The « Scheduler » service is the Pulse 2 daemon in charge of reading the MSC
database, dispatching commands over available launchers and writing results
in the MSC database.

The main service configuration file is /etc/mmc/pulse2/scheduler/scheduler.ini.

Optionnaly, the database configuration may also be defined into
/etc/mmc/plugins/msc.ini

Like all Pulse 2 related configuration file, its file format is INI style.
The file is made of sections, each one starting with a «[sectionname] »header.
In each section options can be defined like this: «option = value».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

The configuration file is splitted into several sections: Some sections
describing the different available launchers may appear, their name must
begin with launcher_.

	scheduler, daemon, database and logging,

	launchers declaration (describing the different available launchers may
appear, their name must begin with launcher_).

scheduler.ini available sections:

	Section name
	Description
	Optional

	scheduler
	Mostly scheduler related behaviors
	no

	daemon
	Scheduler service related behaviors
	yes

	database
	Scheduler database access
	yes (see below)

	launcher_XXX
	A way to talk to launcher_XXX
	no

All the other sections (loggers, handlers, ...) are related to Python language
logging framework. See http://docs.python.org/lib/logging-config-fileformat.html.

« scheduler » section

This section is used to give directives to the scheduler service.

Available options for the “main” section:

	Option name
	Description
	Optional
	Type
	Default value

	id
	This scheduler name, used to take the right jobs in the database.
	no
	string
	

	active_clean_states
	Declare which kind of unconsistant states should be fixed. States can be either ‘run’, ‘stop’, or both, comma-separated.
	yes
	string
	

	analyse_hour
	Once per day, at “analyse_hour” hour (HH:MM:SS), the scheduler will analyse the database, looking to weird / broken commands; set to empty to disable analyse
	yes
	HH:MM:SS
	“” (disabled)

	announce_check
	To announce what we are currently try to do on client, for each stage. For example TRANFERT while transfering something: announce_check = transfert=TRANFERT (comma-separated list as for previous options). currently available keywords: transfert, execute, delete, inventory
	yes
	string
	

	awake_time
	The scheduler will periodicaly awake (for exemple to poll the database), with this key a specific periodicity can be given.
	yes
	int, seconds
	600 (ten minuts)

	cacert
	path to the certificate file describing the certificate authority of the SSL server
	yes, and used only if enablessl is set
	path
	/etc/mmc/pulse2/scheduler/keys/cacert.pem

	clean_state_time
	The scheduler will periodicaly awake to hunt for unconsistant command states, with this key a specific periodicity can be given.
	yes
	int
	3600 (one hour)

	client_check
	comma-separated list of <key>=<value> tokens to ask to the client; value (as part ot the ‘target’ table’ may be name, uuid, ipaddr, mac; only the first value are used for the last two.
	yes
	string
	

	checkstatus_period
	The period of the loop in charge of checking the scheduler health
	yes
	int
	900 (15 minutes)

	dbencoding
	The encoding to use when injecting logs into the MSC database.
	yes
	string
	utf-8

	enablessl
	SSL mode support
	yes
	boolean
	True

	initial_wait
	The amount of seconds to wait for the system to be stabilized when starting.
	yes
	int
	2 (seconds)

	initial_wait
	Add a little randomness to some loops. Default value is .2, ie +/- 20 %
	yes
	float
	.2

	localcert
	path to the SSL server private certificate
	yes, and used only if enablessl is set
	path
	/etc/mmc/pulse2/scheduler/keys/privkey.pem

	host
	This scheduler listing binding IP address
	yes
	string
	127.0.0.1

	lock_processed_commands
	Locking system, use with caution ! The only reason to activate this feature is for systems under heavy load; risk of double-preemption is drastically reduced using this, but your system will be even more slow.
	yes
	boolean
	False

	loghealth_period
	The period of the loop in charge of logging the scheduler health
	yes
	int
	60 (1 minute)

	max_command_time
	Command max authorized time, used by the launcher
	yes
	int
	3600 (one hour)

	max_upload_time
	Upload max authorized time, used by the launcher
	yes
	int
	21600 (six hours)

	max_slots
	The max number of slot to use for all launchers
	yes
	int
	300

	max_wol_time
	WOL wait time
	yes
	int
	300 (five minuts)

	mg_assign_algo
	The plugin the scheduler will use to assign a computer to a group. See doc.
	yes
	string
	default (ie. use scheduler/assign_algo/default)

	mode
	The scheduler way-of-giving-task-to-its-launchers (see doc).
	yes
	string
	async

	password
	The password to use when sending XMLRPC commands to this scheduler.
	yes
	string or base64
	password

	port
	This scheduler listing TCP port.
	yes
	int
	8000

	preempt_amount
	Starting with version 1.2.5, the scheduler will perform this amount of command at a time.
	yes
	int
	50

	preempt_period
	Starting with version 1.2.5, the scheduler will periodicaly perform commands, using this period.
	yes
	int
	1

	resolv_order
	The different means used to find a client on the network (see doc).
	yes
	list of string, separator is space
	fqdn hosts netbios ip

	scheduler_path
	The Scheduler main script location, used by scheduler-manager to start and daemonize the service.
	no
	path
	/usr/sbin/pulse2-scheduler

	server_check
	see client_check for option formating, the main differente is that checks are done server-side, not client-side.
	yes
	string
	

	username
	The name to use when sending XMLRPC commands to this scheduler.
	yes
	string
	username

	verifypeer
	SSL cert verirfication (if set to True, you will have to build and use a PKI)
	yes
	boolean
	False

« daemon » section

This section sets the scheduler service run-time options and privileges.

Available options for the “daemon” section:

	Option name
	Description
	Optional
	Type
	Default value

	group
	The scheduler service runs as this specified group.
	yes
	group
	root

	pidfile
	The scheduler service PID, used by scheduler-manager to track the scheduler service.
	yes
	path
	/var/run/pulse2

	umask
	The scheduler service umask defines the right of the new files it creates (log files for example).
	yes
	octal
	0077

	user
	The scheduler service runs as this specified user.
	yes
	user
	root

	setrlimit
	Resource usage limits to apply to the scheduler process, specified by a string of triplets (resource, soft limit, hard limit). See the Python documentation [http://docs.python.org/library/resource.html] for more information
	yes
	string
	

Example:

[daemon]
pid_path = /var/run/pulse2
user = mmc
group = mmc
umask = 0007
setrlimit = RLIMIT_NOFILE 2048 2048 RLIMIT_CORE 0 0

« database » section

This section can either be defined in scheduler.ini,
or in msc.ini (in that order).

This section is documented into the MMC MSC plugin configuration file.

« launcher_XXX » section

This section define available launchers (one per launcher, “XXX” must be an
integer). By default, no launcher is defined.

Available options for the “launcher_XXX” section:

	Option name
	Description
	Optional
	Type
	Default value

	enablessl
	Flag telling if SSL mode should be used to connect to the launcher.
	no
	boolean
	

	host
	The launcher IP address.
	no
	string
	

	password
	The password to use when we send XMLRPC commands to this launcher.
	no
	string or base64
	

	port
	The launcher TCP port.
	no
	string
	

	username
	The name to use when we send XMLRPC commands to this launcher.
	no
	string
	

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

Development

This section explains how to develop new modules for the Mandriva
Management Console (MMC).

	Contributing to MMC with git
	Repo setup

	Using pull requests

	Commit format

	Commit directly in master

	Writing MMC scripts

	How to write a python module for the MMC agent
	Related documentations

	Creating a Python module

	Python module configuration file

	Exporting Python module API

	How to launch shell commands inside a Python module

	How to write a PHP module for the MMC web interface
	Related documentations

	MMC Page format

	How MMC pages are displayed

	PHP module structure

	Module declaration: infoPackage.inc.php

	How to render a page

	The MMC widget framework

	Useful MMC widgets

	Internationalization and localization

	Style guide for python code
	Introduction

	Code layout

	Whitespace in Expressions and Statements

	Naming conventions

	Comments

	Docstrings

	Python module import rules

	SQLAlchemy code convention

	Tools to check Python code

	Python language version compatibility

	Python additional library compatibility

	Python code copyright header

	Style guide for PHP code
	Introduction

	Code layout

	Code indentation and organisation

	Comments

	Naming conventions

	PHP language version compatibility

	PHP error reporting level

	PHP code copyright header

	MMC projects release guidelines
	Release components

	Preparing a new release

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

Contributing to MMC with git

MMC source code is hosted on github: https://github.com/mandriva-management-console/mmc

Repo setup

	Setup an account on github and fork https://github.com/mandriva-management-console/mmc.

Then checkout your fork:

git clone git@github.com:<USER>/mmc.git

	Add a remote on mandriva-management-console/mmc

git remote add mmc git@github.com:mandriva-management-console/mmc.git
git remote update

	Create a local branch that is tracking the main repository

git branch master-mmc --track mmc/master

	Change the default behavior of git push (if no ref is specified, use the
tracked branch by default)

git config --global push.default tracking

Using pull requests

We use github pull requests to review fixes and new features.

For each bugfix or new feature you will propose a pull request which can
be merge directly in the MMC repository trough the github interface.

This means that you need to create and publish a branch for every fix or
feature then ask a pull of these branches. Thanks to git, this is very easy.

The pull request commits must be clean and atomic.

Fixing a bug or developping a new feature in master

	Update the master-mmc branch to make sure we are working with an up-to-date installation.

git checkout master-mmc
git pull

	Create a local branch based on master-mmc

git checkout -b fix-blah-blah (or feature-blah-blah)

	Fix the bug with one or two commits (each commit must be atomic)

	Publish the branch to your github account

git-publish-branch (http://git-wt-commit.rubyforge.org/git-publish-branch)

	Test your fix or feature ! (others can also test it by merging your branch since its public now)

	If everything is fine, in the github interface, select the fix-blah-blah (or feature-blah-blah) branch and click on pull request.

Github will try to create a pull request on the master branch by default

In the pull request you can explain what your commit is fixing and how
to reproduce the bug if needed.r

Commit format

You should type in the commit title the name of the module that is concerned by
the commit. A commit usually fix or add a feature in a specific module
(inventory, samba, etc...). If the commit target is not a single module you can
use the project name (pulse2, core, mds).

<module|project>: <title> (70 chars max)
<blank line>
<detailed description>

If the commit is releated to an reported issue on http://projects.mandriva.org
reference the issue number in the commit title or the commit body like this:

Fixes #1000

Will close the issue #1000 and make a relation between the commit and the issue
in Redmine.

Refs #1000

Will just make a relation between the commit and the issue. The issue state
won’t be changed.

Commit directly in master

If you have the rights to commit to the main repository and you are sure of
your fix, you might want to commit directly in the main repo directly instead
of creating a pull request.

Use the following procedure to keep a clean history on the main branch
(ie: no merge commits)

	Always create a branch for working on your fix

git checkout master-mmc
git pull
git checkout -b fix-foo

	Fix what you want to fix, test etc. When ready go to 3.

	Update master-mmc to get latests commits

git checkout master-mmc
git pull

	Rebase your branch on top of master-mmc

git checkout fix-foo
git rebase master-mmc

This will apply all the commits you have made in fix-foo on top
of the latest master-mmc history

	Then merge your branch on master-mmc and push the changes to the main repository

git checkout master-mmc
git merge fix-foo
git push

Since all commits in fix-foo are on top of the master-mmc commits
thanks to rebase, the merge will be done in fast forward mode and
there will be no merge commit.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

Writing MMC scripts

Following are a few examples of scripts that you can write using the
MMC API [http://mds.mandriva.org/content/epydoc/frames.html].

This script adds a few users to the LDAP directory:

#!/usr/bin/env python

from mmc.plugins.base import ldapUserGroupControl

users = [('login1', 'passwd1', 'firstname1', 'lastname1'),
 ('login2', 'passwd2', 'firstname2', 'lastname2'),
 ('login3', 'passwd3', 'firstname3', 'lastname3'),
 # ...
]

l = ldapUserGroupControl()

for login, password, firstname, lastname in users:
 # Store user into LDAP
 l.addUser(login, password, firstname, lastname)
 # Change user "mail" attribute value
 l.changeUserAttributes(login, 'mail', login + '@example.com')

This script creates SAMBA users into the LDAP directory, with all needed mail
attributes for Postfix delivery:

#!/usr/bin/env python

from mmc.plugins.samba import sambaLdapControl
from mmc.plugins.mail import MailControl

users = [('username', 'pass', 'name', 'lastname'),
 ('username2', 'pass2', 'name2', 'lastname2'),
]

l = MailControl()
s = sambaLdapControl()

Add group 'allusers' to the LDAP
l.addGroup('allusers')
for login, password, firstname, lastname in users:
 # Create user into the LDAP
 l.addUser(login, password, firstname, lastname)
 # Add user to a group 'allusers'
 l.addUserToGroup('allusers', login)
 # Set user mail
 l.changeUserAttributes(login,'mail',login+'@domain')
 # Add user needed mail objectClass
 l.addMailObjectClass(login,login)
 # Set user mail quota
 l.changeUserAttributes(login,'mailuserquota','512000')
 # Set user mail alias
 l.changeUserAttributes(login,'mailalias','allusers')
 # Add all SAMBA related attributes to the user
 # The SAMBA account will log in with the given SAMBA password
 s.addSmbAttr(login, password)
 # Set user POSIX account password (set the userPassword LDAP field)
 l.changeUserPasswd(login,password)
 # Enable mail delivery for this user
 l.changeMailEnable(login, True)

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

How to write a python module for the MMC agent

Related documentations

	Full MMC Python API documentation [http://mds.mandriva.org/content/epydoc-trunk/].

	Style guide for python code

	Some basic Python / LDAP bindings documentation [http://python-ldap.sourceforge.net/doc/python-ldap/index.html].

Creating a Python module

Each MMC agent module must be located in the
$PYTHONPATH/site-packages/mmc/plugins directory.

When the MMC agent starts, it looks for all Python modules in this
path, and tries to activate them.

Each MMC Python module must declare a function call “activate”.
This function should make all needed tests that ensures the module will
works. This function returns True if all the tests are OK, else False.
In the later case, the MMC agent will give up on this module, and won’t
export it on the network.

The following method must also be implemented

	getVersion: must return the MMC version of the Python
module, which is the same then the MDS version number

	getApiVersion: must return the Python module API
number

	getApiRevision: must return the SVN revision number

Here is a MMC Python module skeleton. For example
/usr/lib/python2.5/site-packages/mmc/plugins/modulename/__init__.py:

VERSION = "2.0.0"
APIVERSION = "4:1:3"
REVISION = int("Rev".split(':')[1].strip(' $'))
def getVersion(): return VERSION
def getApiVersion(): return APIVERSION
def getRevision(): return REVISION
def activate(): return True

A MMC Python module is in the Python language terminology a
“package”. So making a __init__.py file is required to make Python
treats a directory as containing a package. Please read this
section [http://docs.python.org/release/2.6.7/tutorial/modules.html]
from the Python language tutorial to know more about Python packages system.

Python module configuration file

The module configuration file must be located into the
/etc/mmc/plugins/module_name.ini file.

The configuration file should be read using a PluginConfig class
instance. This class inherits from the ConfigParser [http://docs.python.org/2.6/library/configparser.html#module-ConfigParser] class.

This configuration file must at least contains a “main” section
with the “disable” option, telling if the module is disabled or
not:

[main]
disable = 0

If the configuration file doesn’t exist, or doesn’t have the
“disable” option, the module is by default considered as
disabled.

from mmc.support.config import PluginConfig, ConfigException

class ModulenameConfig(PluginConfig):

 def setDefault(self):
 """
 Set good default for the module if a parameter is missing the
 configuration file.
 This function is called in the class constructor, so what you
 set here will be overwritten by the readConf method.
 """
 PluginConfig.setDefault(self)
 self.confOption = "option1"
 # ...

 def readConf(self):
 """
 Read the configuration file using the ConfigParser API.
 The PluginConfig.readConf reads the "disable" option of the
 "main" section.
 """
 PluginConfig.readConf(self)
 self.confOption = self.get("sectionname", "optionname")
 # ...

 def check(self):
 """
 Check the values set in the configuration file.
 Must be implemented by the subclass. ConfigException is raised
 with a corresponding error string if a check fails.
 """
 if not self.confOption: raise ConfigException("Conf error")

 def activate():
 # Get module config from "/etc/mmc/plugins/module_name.ini"
 config = ModulenameConfig("module_name")
 ...
 return True

Exporting Python module API

All methods defined in the Python module are exported by the MMC
agent, and can be directy called using XML-RPC.

For example:

def activate():
 return True

Module attribute can't be exported with XML-RPC
value = 1234

This method will be exported
def func1(arg1A, arg1B):
 # ...
 return SomeClass().func1(arg1A, arg1B)

This method will be exported too
def func2(arg2A, arg2B):
 # ...
 return SomeClass().func2(arg2A, arg2B)

Class can't be exported with XML-RPC !
class SomeClass:
 def func1(self, argA, argB):
 # ...
 return "xxx"

 def func2(self, argA, argB):
 # ...
 return "zzz"

How to launch shell commands inside a Python module

As the MMC agent is written on top of Python Twisted, you can’t
use the dedicated standard Python modules (like commands or popen) to
run shell commands. You must use the Twisted API, and write ProcessProtocol
classes [http://twistedmatrix.com/projects/core/documentation/howto/process.html].

But we provide simple ProcessProtocol based functions to run a
process, and get its outputs.

Blocking mode

In blocking mode, if we start a shell command, the twisted server
will loop until a process terminates. Blocking mode should not be
used for functions that can be called by XML-RPC, because they will
completely block the server.
The server won’t process other requests until the blocking code is
terminated.

But when using the MMC API in command line, it’s simpler to use the
blocking mode.

Here is an example:

Import the shLaunch method
from mmc.support.mmctools import shLaunch
Run "ls -l"
shLaunch returns once the shell command terminates
proc = shLaunch("ls -l")
Return shell command exit code
print proc.exitCode
Return shell command stdout
print proc.out
Return shell command stderr
print proc.err

Non blocking mode

Non blocking-mode should be used when a method called by XML-RPC
may block.
Basically, the method should not return the result, but a Deferred
object attached to a callback corresponding to the result.
The twisted reactor will process the deferred, send the result
to the callback, and the callback will finally return the wanted
result.

Here is an example:

Import the shLaunchDeferred method
from mmc.support.mmctools import shLaunchDeferred

def runLs():
 def cb(shprocess):
 # The callback just return the process outputs
 return shprocess.exitCode, shprocess.out, shprocess.err
 d = shLaunchDeferred("ls -l")
 # shLaunchDeferred returns a Deferred() object
 # We add the cb function as a callback
 d.addCallback(cb)
 # We return the Deferred() object
 return d

For more explanation about Python Twisted and Deferred objects, please read
this page [http://twistedmatrix.com/projects/core/documentation/howto/defer.html].

To use the runLs function in a python script, without the XML-RPC server:

from twisted.internet import reactor, defer
from xxx import runLs

def printResult(ret):
 print ret
 reactor.stop()

d = runLs()
runLs returns a deferred object, we add a callback that is just printing the result
d.addCallback(printResult)
reactor.run()

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

How to write a PHP module for the MMC web interface

Related documentations

	Full MMC PHP web interface documentation [http://mds.mandriva.org/content/doxygen-trunk/html/].

	Style guide for PHP code

MMC Page format

A MMC page is made of 5 elements:

	page header: expert mode button, disconnect button

	page footer: displays MMC components version

	top navigation bar: shows all available MMC sub-modules. A MMC
module can offer more than on sub-modules. For example, the “base”
module display the “Users” and “Groups” pane.

	left sidebar: shows all available actions inside a
sub-modules.

	content: HTML content that allows a user to make an action
(forms, button, etc.)

Here is a simple schema:

/-------------------------\
| HEADER |
\-------------------------/
/-------------------------\
| |
| NAVIGATION BAR |
| |
\-------------------------/
/-----\/------------------\
L S		
E I		
F D		
T E		CONTENT
B		
A		
R		
\-----/\------------------/		
/-------------------------\		
FOOTER		
\-------------------------/

When writing a MMC web module, you can:

	defines new sub-modules (new panes) into the navigation
bar

	defines new actions into the left sidebar

	set a content for each action

How MMC pages are displayed

The /usr/share/mmc/main.php file is the key.

Called without argument (e.g. http://127.0.0.1/mmc/main.php), the
MMC portal page is displayed. When a user login into the interface, this
is the first page that is displayed.

To display other pages, the following parameters must be given to
this PHP scipt:

	module: the name of the module (top navigation bar pane) where
the page is located

	submod: the name of the sub-module (left navigation bar pane)
where the page is located

	action: the base name of the PHP script that displays the
page

For example:
http://127.0.0.1/mmc/main.php&module=base&submod=users&action=add
will call the “add.php” script of the “users” sub-module of the “base”
module.

PHP module structure

A PHP module of the MMC web interface is fully contained into the
/usr/share/mmc/modules/[module_name] directory of a MMC installation.

This directory should looks like this:

.
|-- graph
| |-- img
| | |-- ...
| `-- submodule1
| `-- index.css
|-- includes
| |-- module-xmlrpc.php
| |-- publicFunc.php
|-- infoPackage.inc.php
|-- submodule1
| |-- page1.php
| |-- page2.php
| |-- page3.php
| |-- ...
| |-- localSidebar.php
|-- submodule2
| |-- localSidebar.php
| |-- ...
|-- locale
|-- fr_FR.utf8
| `-- LC_MESSAGES
| `-- module.po
|-- nb_NO.utf8
| `-- LC_MESSAGES
| `-- module.po
|-- ...

	infoPackage.inc.php: module declaration. See the section Module declaration: infoPackage.inc.php

	includes: where should be put module include files: module
widgets, module XMLRPC calls, etc.

	includes/publicFunc.php: this file included by various MMC
pages. For example, if the module allows to manage user LDAP fields,
his file can be used when rendering the user edit page.

	graph: where should be stored all graphical elements: images
(in graph/img), extra CSS, etc.

	submoduleN: owns all the pages of a submodule

	submoduleN/localSidebar: left sidebar of a submodule when
displaying sub-module pages

	locale: owns the i18n internationalization files of the
module, used by gettext.

Mapping between main.php arguments and modules

The main.php arguments are directly related to modules directory
organization.

For example, when calling
http://127.0.0.1/mmc/main.php&module=base&submod=users&action=add,
the file
/usr/share/mmc/modules/base/users/add.php is
executed.

Module declaration: infoPackage.inc.php

This mandatory file defines:

	the module name and description

	the sub-modules name, description, and their corresponding icons into the
top navigation bar

	all the available module web pages, their names and their options

	form input fields that are protected by the ACL system

These informations are also used by the MMC home page to display
the module summary.

Commented example:

<?php

Register a new module called "module1"
$mod = new Module("module1");
MMC module version, should follow MDS version release
$mod->setVersion("2.0.0");
SVN revision bumber
$mod->setRevision("$Rev$");
module description. The _T("") syntax will be explained later
$mod->setDescription(_T("Module 1 service"),"module1");
/*
Module API version this version can use.
The MMC agent Python module and the web interface PHP module
API version must match.
*/
$mod->setAPIVersion("4:1:3");
/* Register a new sub-module */
$submod = new SubModule("submodule1");
/* Set submodule description */
$submod->setDescription(_T("Sub module 1", "module1"));
/*
Icons to use in the top navigation bar for this sub-module.
The following images will be displayed:
- /usr/share/mmc/modules/module1/graph/img/submodule1.png: sub-module not selected
- .../submodule1_hl.png: mouse hover on the sub-module icon (the icon is highlighted)
- .../submodule1_select: the sub-module is selected
*/
$submod->setImg("modules/module1/graph/img/submodule1");
/*
The page to load when selecting the sub-module
e.g.: main.php?submod=module1&submod=submodule1&action=index
*/
$submod->setDefaultPage("module1/submodule1/index");
/* Sub-module priority in the top navigation bar */
$submod->setPriority(300);
/* Register pages in this sub-module */
/*
This new page will be displayed when using this URL:
e.g.: main.php?submod=module1&submod=submodule1&action=index
The corresponding PHP file will be: /usr/share/mmc/modules/module1/submodule1/index.php
A page must be registered to be displayed.
*/
$page = new Page("index", _T("Sub-module index page", "module1"));
/* Add this page to the sub-module */
$submod->addPage($page);
/* Another page */
$page = new Page("edit",_T("Sub-module edit page", "module1"));
/*
Options can be set on pages.
If "visible" is set to False, the page won't be displayed in the sub-module summary on the MMC home page.
*/
$page->setOptions(array("visible"=>False));
/* A page can contain tabs. These tabs must be declared to get ACL support on them */
$page->addTab(new Tab("tabid1", "Tab description 1"));
$page->addTab(new Tab("tabid2", "Tab description 2"));
$submod->addPage($page);
/* Add the sub-module to the module */
$mod->addSubmod($submod);
/* Defines other submodules and pages */
$submod = new SubModule("submodule2");
...
...
/* And put the module into MMC application */
$MMCApp = &MMCApp::getInstance();
$MMCApp->addModule(&$mod);

?>

The following options can be set on a page:

	visible: if set to False, the page won’t be displayed in the
sub-module summary on the MMC home page. Always True by
default.

	noHeader: If set to True, the header and the footer won’t be
inserted automatically when rendering the page. This option is
useful for popup page and AJAX related pages. False by
default.

	noACL: If set to True, no ACL entry is linked to this page.
False by default.

	AJAX: same as setting noACL to True and noHeader to true.
Always use this for URL that will be called by scriptaculous
Ajax.Updater objects. False by default.

How to render a page

Once a page is registered into the infoPackage.php file, it can be
rendered. The main.php script take care of this:

	It checks that the current user has the rights to see the
page. If not, the user is redirected to the MMC home page

	If page noHeader option is set to False, the MMC header is
rendered

	The registered PHP script corresponding to the page is
executed

	If page noHeader option is set to False, the MMC footer is
rendered

Notice that only the header and the footer can be rendered
automatically. The top navigation bar, the left sidebar and the page
content must be provided by the registered PHP script.

Notice that for special page like the popup, there is no need of
header, footer and bars, only a content should be provide.

The PageGenerator class

This class allows to easily creates a page with the top
navigation bar and the left sidebar. Here is a commented example of a
simple MMC page:

<?php

/* localSidebar.php contains the left sidebar elements of all the pages sub-module. See next section. */
require("localSidebar.php");
/*
Display the top navigation bar, and prepare the page rendering.
The current sub-module pane is automatically selected.
*/
require("graph/navbar.inc.php");
/*
Create a page with a title
The title will be displayed as a H2
*/
$p = new PageGenerator(_T("Simple page example"));
/*
$sidemenu has been defined in the localSidebar.php file
We set it as the page left side bar
*/
$p->setSideMenu($sidemenu);
/*
We ask to the PageGenerator instance to render.
The page title and the left sidebar are displayed.
The current page corresponding pane is automatically selected in the left side bar.
*/
$p->display();
/* Fill the page with content */
...

?>

The SideMenu and SideMenuItem classes

The SideMenu class allows to build the left sidebar menu of a
page. Here is an example, that could have been the content of the
“localSidebar.php” of the previous section.

<?php

$sidemenu = new SideMenu();
/*
CSS class name to use when rendering the sidebar.
You should use the sub-module name
*/
$sidemenu->setClass("submodule1");
/*
Register new SideMenuItem objects in the menu.
Each item is a menu pane.
*/
$sidemenu->addSideMenuItem(new SideMenuItem(_T("Simple page"),
 "module1", "submodule1", "index", "modules/module1/graph/img/module1_active.png",
 "modules/module1/graph/img/module1_inactive.png")
);
$sidemenu->addSideMenuItem(new SideMenuItem(_T("Another page"),
 "module1", "submodule1", "add", "modules/module1/graph/img/module1_active.png",
 "modules/module1/graph/img/module1_inactive.png")
);

?>

The SideMenuItem constructor arguments are

	the item label

	the next three arguments are needed to create the URL link
so that clicking on the menu item loads the right page. They
corresponds to a module name (“module1”), a sub-module name
(“submodule1”), and a registered page (“index”).

	the last two optional arguments allow to define an icon to
use when the sidemenu item is selected, and when not selected. If
not specified, no icon will be used.

Adding page from a module to another module

With the infoPackage.inc.php file, you can also
add the page of a module to another module. This is useful if you
want to provide new features to an already existing module.

In our example, we add a new page to the “computers” sub-module of the “base”
module. Here is the corresponding infoPackage.inc.php:

<?php

/* Get the base module instance reference */
$base = &$MMCApp->getModule('base');
/* Get the computers sub-module instance reference */
$computers = &$base->getSubmod('computers');
/* Add the page to the module */
$page = new Page("extrapage", _T("Extra page", "module1"));
$page->setFile("modules/module1/extra/extrapage.php");
$computers->addPage($page);
/* You should unset the references when you finished using them */
unset($base);
unset($computers);

?>

With this code, the PHP script modules/module1/extra/extrapage.php
will be called when using the main.php?module=base&submod=computers&action=extrapage.

The remaining problem is the sidebar management. In the called PHP script, you
must include the localSidebar.php script from the other sub-module
module, and add your SideMenuItem object to it.

For example:

<?php
require("modules/base/computers/localSidebar.php");
require("graph/navbar.inc.php");
$p = new PageGenerator(_T("Extra page with new functions"));
/* Add new sidemenu item */
$sidemenu->addSideMenuItem(new SideMenuItem(_T("Extra page"),"base",
 "computers", "extrapage", "modules/base/graph/img/computers_active.png",
 "modules/base/graph/img/computers_inactive.png")
);
$p->setSideMenu($sidemenu);
$p->display();
...
?>

Including CSS file

When a page is rendered, the framework includes the file
modules/currentmodule/graph/currentmodule/currentsubmodule/index.css
if it exists.

“currentmodule” and “currentsubmodule” are guessed from the current URL.

The MMC widget framework

The MMC widget framework is a set of classes that allows to wrap
HTML code into PHP classes. The goal of this very simple framework
is:

	separate HTML code and PHP code

	factorize HTML and PHP code

	use the same set of widgets accross all the module interface,
for a better user experience

There are two kinds of widgets: widgets that contains other
widgets, widgets that doesn’t contain other widgets.

MMC widgets that are containers inherits from the HtmlContainer
class, and the other widgets inherits from the HtmlElement.

Every MMC pages have been built using instances of these classes.
Here is a little example:

<?php
/* Build a new validating form */
$f = new ValidatingForm();
/* Push a table into the form, and go to the table level */
$f->push(new Table());
/* Add two TR to the table */
/* Ask for a given name */
$f->add(
new TrFormElement(_T("Given name"), new InputTpl("givenName"),
array("value" => "", "required" => True)
);
/* Ask for a family name */
$f->add(
new TrFormElement(_T("Family name"), new InputTpl("name"),
array("value" => "", "required" => True)
);
/* Go back to the validating form level */
$f->pop();
/* Add a button to the form */
$f->addButton("bvalid", _T("Validate"));
/* Close the form */
$f->pop();
/* Render all the form and the objects it contains */
$f->display();
?>

This example renders a HTML form, with two input fields asking for
a given name and a family name.

In this example, ValidatingForm and Table are two HtmlContainer
sub-classes. TrFormElement and InputTpl are two HtmlElement
sub-classes.

HtmlContainer objects

A HtmlContainer object owns an ordered list of elements. An
element is either an instance from a HtmlContainer sub-class, either
an instance from a HtmlElement sub-class.

This list of elements is either opened (new elements can be
added to the list), either closed (no more elements can be
added).

When adding a HtmlElement or a HtmlContainer object to a
HtmlContainer, the object is added to the last added HtmlContainer
which does not have a closed element list.

The HtmlContainer class main methods are:

	push($newHtmlContainer): recursively push into the widget
element list a new container

	pop(): pop the last pushed HtmlContainer with an opened
element list, and close the list.

	add(NewHtmlElement): recursively add into the widget element
list a new element

	display(): recursively render HTML code. The display method
is called on each element of the list.

Here is an example. The indentation helps to show which
container is used:

<?php
$o = new HtmlContainer;
$o->add(HtmlElement());
$o->push(HtmlContainer());
/* The HtmlElement are added to the latest added and open HtmlContainer */
$o->add(HtmlElement());
$o->push(HtmlContainer());
/* The HtmlElement are added to the latest added and open HtmlContainer */
$o->add(HtmlElement());
$o->add(HtmlElement());
/* closing the element list of the latest HtmlContainer */
$o->pop();
/* falling back to the previous HtmlContainer */
$o->add(HtmlElement());
/* closing the element list of the latest HtmlContainer */
$o->pop();
$o->add(HtmlElement());
/* Popping the root container */
$o->pop();
/* Display the HTML code */
$o->display();
?>

To render HTML code, a HtmContainer subclass needs only to
implement these two functions:

	begin: before recursivelly calling display() on each element
of its list, the container must put its starting HTML tag. This
method returns the HTML tag as a string.

	end: After recursivelly calling display() on each element of
its list, the container must put its ending HTML tag. This method
returns the HTML tag as a string.

Here is an example of a HtmlContainer subclass that wraps a HTML
table:

<?php

class Table extends HtmlContainer {
 function Table() {
 $this->HtmlContainer();
 }

 function begin() {
 return "<table>";
 }

 function end() {
 return "</table>";
 }
}

?>

HtmlElement objects

These objects are very simple PHP class wrapper around HTML
code, and can be stored into a HtmlContainer object.

To render HTML code, a HtmElement subclass needs only to
implement the display() function. This function just prints the HTML
code implementing the widget. For example:

<?php

class Title Extends HtmlElement {

 function Title($text) {
 $this->$text = $text
 }

 function display() {
 print "<h1>" . $this->text . "</h1>";
 }
}

?>

Useful MMC widgets

The following widgets are defined in the includes/PageGenerator.php
file.

The ListInfos class

The ListInfos class allows to create a paged multi-column table
with a navigation bar, and to link each row to a set of actions. For
example, the MMC user list is implemented using a ListInfos
widget.

Here is an example. We create a table with two columns: the
first is a fruit, the second is a quantity.

<?php

require ("includes/PageGenerator.php");
$fruits = array("apple", "banana", "lemon", "papaya", "fig", "olive",
 "clementine", "orange", "mandarin", "grapes", "kumquat");
$stock = array("5", "8", "40", "12", "40", "51", "12", "7", "9", "15", "21");
/*
Create the widget. The first column will be labeled "Fruit name",
and each cell will contain an item of the $fruits array.
*/
$l = new ListInfos($fruits, _T("Fruit name"));
/* Add the second column */
$l->addExtraInfo($stock, _T("Quantity"));
/*
Set the item counter label.
The counter is displayed just above the table:
Fruits 1 to 10 - Total 11 (page 1/2)
*/
$l->setName(_T("Fruits"));
/* Display the widget */
$l->display();

?>

The item counter label is displayed just above the table. In our
example, it shows: Fruits 1 to 10 - Total 11 (page 1/2). It
means:

	Fruits 1 to 10: from all table rows, the row #1 to row #10
are displayed. By default, the ListInfos widget is configured to
display only 10 rows. This setting is set into the “maxperpage”
option of the /etc/mmc/mmc.ini file.

	Total 11: the total table rows number

	(page 1/2): the first page, that corresponds to the first 10
rows of the table, is displayed. If you click on the “Next”
button, the second page will be displayed, with the single row
#11.

Now we are going to add some action items to each rows:

<?php

require ("includes/PageGenerator.php");
$l = new ListInfos($fruits, _T("Fruit name"));
$l->addExtraInfo($stock, _T("Quantity"));
$l->setName(_T("Fruits"));
/* Add actions */
$l->addActionItem(new ActionItem(_T("View fruit"), "view", "display", "fruit"));
$l->addActionItem(new ActionPopupItem(_T("Delete fruit"), "view", "delete", "fruit"));
$l->display();

?>

Thanks to addActionItem, we add to each row two actions: view
the fruit, and delete the fruit.

ActionItem constructor arguments are:

	action label (“View fruit”), displayed when the mouse hover
on the action icon

	the web page (“view”) of the current sub-module to use to
perform the action
These

	the CSS class (“display”) to use to set the action icons

	the URL parameter name (“fruit”) used to give to the web
page that will perform the action the object. The content of the
first row is always used as the parameter value.

In our example, the URL link for the first row will be:
main.php?module=module1&submod=submodule1&action=view&fruit=apple.
For the second row, “...&fruit=banana”, etc.

Sometimes an action link needs to send the user to another module or submodule,
instead of the current one. To do this, you add these parameters to the
ActionItem constructor:

	$module: the module part of the URL link

	$submod: the sub-module part of the URL link

	$tab: the tab part of the URL link (if the link goes to a specific tab of a widget

ActionPopupItem displays a little popup page when clicked. This
is useful for actions that just need an extra validation to be
performed.

When there are actions, the first column cells are automatically
linked to the first action. But this can be disabled with:

<?php

$l->disableFirstColumnActionLink();

?>

The default size of the JavaScript popup window is 300 pixel. This
can be changed like this:

<?php

$p = new ActionPopupItem(_T("Delete fruit"), "view", "delete", "fruit");
$p->setWidth(500); /* Size is now 500 px */
$l->addActionItem($p);

?>

Conditional actions

With the addActionItem method, you add an action to every row of a ListInfos
widget. In some cases, an action can’t be performed for a specific row, so you
don’t want the action link to be available.

The addActionItemArray method allows to pass to the ListInfos widget an array
of actions to display:

<?php

require ("includes/PageGenerator.php");
$fruits = array("apple", "banana", "lemon", "papaya", "fig", "olive",
 "clementine", "orange", "mandarin", "grapes", "kumquat");
$stock = array("5", "8", "40", "12", "40", "51", "12", "7", "9", "15", "21");
$viewAction = new ActionItem(_T("View fruit"), "view", "afficher", "fruit");
$deleteAction = new ActionPopupItem(_T("Delete fruit"), "view", "supprimer", "fruit");
/* an EmptyActionItem will be displayed as a blank space */
$emptyAction = new EmptyActionItem();
$actionsView = array();
$actionsDel = array();
foreach($stock as $value) {
 if ($value < 10) {
 /* Only put the deleteAction link if value is lower than 10 */
 $actionsDel[] = $deleteAction;
 $actionsView[] = $emptyAction;
 } else {
 /* else only put the viewAction link */
 $actionsView[] = $viewAction;
 $actionsDel[] = $emptyAction;
 }
}
$l = new ListInfos($fruits, _T("Fruit name"));
$l->addExtraInfo($stock, _T("Quantity"));
$l->setName(_T("Fruits"));
$l->addActionItemArray($actionsView);
$l->addActionItemArray($actionsDel);
$l->display();

?>

Ajaxified ListInfos

A ListInfos widget content can be dynamically filtered.

First, we write the page that render the ListInfos widget. This
page gets the filter to apply to the ListInfos widget as a GET
parameter. Here is the code of
/usr/share/mmc/modules/module1/submodule1/ajaxFruits.php:

<?php

$filter = $_GET["filter"];
$fruits = array("apple", "banana", "lemon", "papaya", "fig", "olive",
 "clementine", "orange", "mandarin", "grapes", "kumquat");
/* Make a fruit list using the filter */
$filtered = array();
foreach($fruits as $fruit) {
 if ($filter == "" or !(strpos($fruit, $filter) === False))
 $filtered[] = $fruit;
}
$l = new ListInfos($filtered, _T("Fruit name"));
/*
Instead of using the standard widget navigation bar, use the AJAX version.
This version allows to keeps the filter when clicking on previous / next.
*/
$l->setNavBar(new AjaxNavBar(count($filtered), $filter));
$l->setName(_T("Fruits"));
$l->display();

?>

This PHP code just displays a ListInfos widget where the
elements are filtered.

Now we create a page where the ListInfos widget is automatically
updated using a filter. Here is the code of
/usr/share/mmc/modules/module1/submodule1/index.php:

<?php

require("localSidebar.php");
require("graph/navbar.inc.php");
/*
Create the filtering form with a input field, and bind this input field
to an AJAX updater that will use the specified URL to dynamically fill
in a DIV (see below) container.
*/
$ajax = new AjaxFilter(urlStrRedirect("module1/submodule1/ajaxFruits"));
/* You can ask the AJAX updater to be called every 10s */
$ajax->setRefresh(10000);
$ajax->display();
/* Set page title and left side bar */
$p = new PageGenerator(sprintf(_T("Fruits"), "module1"));
$p->setSideMenu($sidemenu);
$p->display();
/* Display the DIV container that will be updated */
$ajax->displayDivToUpdate();

?>

In infoPackage.inc.php, these two PHP scripts should be registered
like this:

<?php

$mod = new Module("module1");
...
$submod = new SubModule("submodule1");
...
/* Register the first page */
$page = new Page("index", _T("Fruit list", "module1"));
$submod->addPage($page);
/* Register the page called using the AJAX DIV updater */
$page = new Page("ajaxFruit");
$page->setFile("modules/module1/submodule1/ajaxFruits.php",
 array("AJAX" => True, "visible" => False)
);
$submod->addPage($page);
...

?>

The ValidatingForm widget

This widget (a subclass of HtmlContainer) is a HTML form with
input fields validation. The form can’t be validated (POSTed) if some
required fields are not filled in, or if their values don’t match a
given regex.

A lot of MMC pages display a HTML form, containing a HTML table
with multiple rows of a single labeled input field. Here is an
example

<?php

/* Build a new validating form */
$f = new ValidatingForm();
/* Push a table into the form, and go to the table level */
$f->push(new Table());
/* Add two TR to the table */
/* Ask for a given name */
$f->add(
 new TrFormElement(_T("Given name"), new InputTpl("givenName"),
 array("value" => "", "required" => True)
)
);
/* Ask for a family name */
$f->add(
 new TrFormElement(_T("Family name"), new InputTpl("name"),
 array("value" => "", "required" => True)
)
);
/* Go back to the validating form level */
$f->pop();
/* Add a button to the form */
$f->addButton("bvalid", _T("Validate"));
/* Close the form */
$f->pop();
/* Render all the form and the objects it contains */
$f->display();

?>

The TrFormElement class creates objects that will render a HTML
row (a TR) with two columns (two TDs). The first column contains a
describing label, and the second column an input field. In the
example:

<?php
/* Ask for a given name */
$f->add(
 new TrFormElement(_T("Given name"), new InputTpl("givenName"),
 array("value" => "", "required" => True)
)
);

?>

TrFormElement takes three argument:

	“Given name” is the label of the input field.

	InputTpl(“givenName”) is a standard HTML input field, with
“givenName” as the HTML “name” attribute.

	array(“value” => “”, “required” => True) is an array
of option for the InputTpl object. “value” => “” means the HTML
“value” attribute of the input field is empty. “required” =>
True means that the form can’t be posted if the input field is
empty.

See next section about all the InputTpl widget options.

The InputTpl based widgets

The InputTpl class allows to render a standard HTML input field.
The constructor takes two arguments:

	$name: the value of the “name” attribute of the INPUT HTML
field

	$regexp: a regexp that must be matched by the input field,
else the HTML form won’t be posted. The regexp is used only if the
input field is inserted into a ValidatingForm object. If not
given, the default regexp is “/.+/”.

When rendering the widget, additional options can be given to
the “display” method thanks to an array:

	“value”: an empty string by default. That’s the input field
value.

	“required”: False by default. If set to true and the
InputTpl object is inside a ValidatingForm object, the form can’t
be posted if the field is empty

A lots of class that inherits from InputTpl have been written.
For example: MACInputTpl is an HTML input field that only accepts MAC
address, NumericInputTpl only accepts numeric value. Theses kind of
classes are very easy to write:

<?php

class NumericInputTpl extends InputTpl {
 function NumericInputTpl($name) {
 $this->name = $name;
 $this->regexp = '/^[0-9]*$/';
 }
}
class MACInputTpl extends InputTpl {
 function MACInputTpl($name) {
 $this->name = $name;
 $this->regexp = '/^(\[0-9a-f]{2}:){5}[0-9a-f]{2}$/i';
 }
}

?>

The PopupForm widget

This widget allows to build a MMC popup form triggered by a
ActionPopupItem very quickly. For example:

<?php

if (isset(_POST["bdel"])) {
 /* action to remove the fruit */
 ...
} else {
 $fruit = urldecode($_GET["fruit"]);
 /* Create the form and set its title */
 $f = new PopupForm(_T("Delete a fruit"));
 /* Add a little description text */
 $f->addText(_T("This action will delete all the fruit"));
 /*
 Put a hidden input field into the form.
 The HiddenTpl is explained later in this document
 */
 $hidden = new HiddenTpl("fruit");
 /* Add this field to the form */
 $f->add($hidden, array("value" => $fruit, "hide" => True));
 /* Add validation and cancel buttons */
 $f->addValidateButton("bdel");
 $f->addCancelButton("bback");
 $f->display();
}

?>

The NotifyWidgetSuccess and NotifyWidgetFailure class

These two widgets displays a javascrip popup with a message,
with a OK button.

<?php

/* Error message popup */
new NotifyWidgetFailure(_T("Error ! /o\"));
/* Success */
new NotifyWidgetSuccess(_T("Reboot was successful ! \o/"));

?>

Creating page with tabs

This widget allows to include a tab selector that displays a page
when clicking on a tab.

For example:

<?php

require("localSidebar.php");
require("graph/navbar.inc.php");
/* We use the TabbedPageGenerator class */
$p = new TabbedPageGenerator();
/* Set the sidemenu, as the PageGenerator class */
$p->setSideMenu($sidemenu);
/*
Not required: you can add some content above the tab selector
The content is a title, and a PHP file to include.
*/
$p->addTop("Page title", "modules/module1/submodule1/top.php");
/*
Now we add new tab to the tab selector.
Each tab is associated to an id, a tab title, a page title, and a PHP file to include.
*/
$p->addTab("tab1", "Tab 1 title", "Page 1 title", "modules/module1/submodule1/tab1.php");
$p->addTab("tab2", "Tab 2 title", "Page 2 title", "modules/module1/submodule1/tab2.php");
$p->addTab("tab3", "Tab 3 title", "Page 3 title", "modules/module1/submodule1/tab3.php");
/*
You can add a fifth argument, which is an array of URL parameters
that will be used when building the URL link of the tab.
*/
$p->addTab("tab4", "Tab 4 title", "Page 4 title", "modules/module1/submodule1/tab4.php",
 array("uid" => "foo")
);
$p->display();

?>

If no tab is selected, the first tab is automatically activated.

To build a tab URL link, the current module, submodule and action are used, with the given tab id and the given array of URL parameters.
For example:

<?php

$p->addTab("tab4", "Tab 4 title", "Page 4 title", "modules/module1/submodule1/tab4.php",
 array("uid" => "foo")
);

?>

will build this link: module=currentmod&submod=currentsubmod&action=currentaction&tab=tab4&uid=foo

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

Internationalization and localization

The MMC uses the GNU gettext system to produce multi-lingual
messages. If you are not famliar with GNU gettext, please read the GNU
gettext manual [http://www.gnu.org/software/gettext/manual/gettext.html].

Two special PHP methods are needed to translate the
interface:

	_($msg): the underscore is a PHP alias for the gettext($msg)
method. The gettext method looks up a message in the current text
domain. The default text domain is the one from the MMC “base”
module. In other words, the _(“$msg”) method can be only used to
translate strings from the MMC “base” module.

	_T($msg, $module): this function looks up a message for a
given module. So if you create MMC web module called “module1”, to
translate a message you write:

echo _T("This is a message to translate", "module1");

As the module name is already in the URL to be displayed (see
How MMC pages are displayed, if you don’t specify a module
name it can be automatically guessed.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

Style guide for python code

Coding conventions for the python code of all MMC components

Introduction

A lot of MMC components are written in Python, among them the MMC agent and
its python plugins.

This document sets the coding conventions for the Python code of all MMC
components.

This document is totally based on Guido Van Rossum “Style Guide for ython Code”
document (see http://www.python.org/dev/peps/pep-0008/): you must read it too.
This document only emphases on important coding conventions.

Code layout

Indentation: use 4 spaces per indentation level, no tabs allowed. It’s ok with
Emacs Python mode.

Encoding: the source code must always use the UTF-8 encoding.

Whitespace in Expressions and Statements

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })
Yes: if x == 4: print x, y; x, y = y, x
No: if (x == 4): print x, y; x, y = y, x
No: if x == 4 : print x , y ; x , y = y , x
Yes: spam(1)
No: spam (1)
Yes: dict['key'] = list[index]
No: dict \['key'] = list \[index]
Yes:
x = 1
y = 2
long_variable = 3
No:
x = 1
y = 2
long_variable = 3

Naming conventions

Module name: short, lowercase names, without underscores

Class Names: CapitalizedWords

Functions Names: mixedCase for instance method, lower_case_with_underscores for other.

Constants: UPPER_CASE_WITH_UNDERSCORE

Comments

They are written in english.

They always start with a capitalized first word.

There is always a space between the # and the begin of the comment.

Docstrings

All modules, functions and classes must have a docstring.

The docstring must be written in the Epytext Markup Language
format. We use epydoc to generate the API documentation. See
http://epydoc.sourceforge.net/epytext.html and
http://epydoc.sourceforge.net/fields.html for more
information.

The recommanded epydoc fields are:

def foo(a, b, c):
 """
 This methods performs funny things.
 @param a: first parameter of foo
 @type a: int
 @param b: second parameter of foo
 @type b: str
 @param c: third parameter of foo
 @type c: unicode
 @raise ExceptionFoo: raised if b == 'bar'
 @rtype: int
 @return: the result should be 42
 """

Remarks:

	Sometimes the method description can be written in @return if the function
is simple.

	If you skip @param because the parameter name seems really explicit to you,
use at least: @rtype and @return

	Please use a spellchecker for your docstrings

Python module import rules

from mod import * is forbidden, because it doesn’t allow us to track module
dependencies effectively.

The import order should be:

Import standard python module
import os
import sys
Import external modules (SQLAlchemy, Twisted, python-ldap, etc.)
from sqlalchemy.orm import create_session
Import internal modules
from mmc.plugins.base import ...

SQLAlchemy code convention

Querying with the ORM

Here are the recommended code guidelines when querying using the ORM:

	First select the objects you want as a result:

results = session.query(Table1).add_entity(Table2).add_entity(...)

If your query will return more than one row, please call the query “results”,
or “rows”. If you are querying for one object only, please use a variable name
corresponding to this object.

	Then if needed perform a join between the tables. It is usually done using
join in a select_from expression

.select_from(table1.join(table2).join(...))

	Then add filter expressions to filter down the query:

.filter(Table1.num == 42)
.filter(Table2.num == -42)

Please use “Table1.num” instead of “table1.c.num”, because it’s more pythonish.

	At least add the query limit:

	::

	.all() # .first() .one(), or count()

Here is the complete query code:

results = session.query(Table1).add_entity(Table2).add_entity(...)
.select_from(table1.join(table2).join(...))
.filter(Table1.num == 42)
.filter(Table2.num == -42)
.all()
Also accepted
results = session.query(Table1).add_entity(Table2).add_entity(...)
select_from(table1.join(table2).join(...))
filter(Table1.num == 42)
filter(Table2.num == -42)
all()
Also accepted
results = session.query(Table1).add_entity(Table2).add_entity(...)
results = results.select_from(table1.join(table2).join(...))
results = results.filter(Table1.num == 42)
results = results.filter(Table2.num == -42)
results = results.all()

If you’re looking for one result only (e.g. to get the properties of an object
or check its existence) please use “one()” instead of “first()”. “one()” will
raise an exception if no object or more than one objects if returned, and so it
forces you to deal with the exception.

Tools to check Python code

Use the pyflakes tool to check your code. The code must be fixed if these
messages are displayed:

	“import * used; unable to detect undefined names”

	“‘x’ undefined variable”

	“‘x’ imported but unused”

Python language version compatibility

The code must be compatible with Python 2.5. That’s a rather old version,
but we never had any problems that forced us to use a newer version.

Python additional library compatibility

The code must be compatible with these library versions:

	Python Twisted: 8.1.0

	Python LDAP: 2.0

	Python SQLAlchemy: 0.5

Python code copyright header

Here is the header that must be used:

-*- coding: utf-8; -*-
#
(c) 2004-2007 Linbox / Free&ALter Soft, http://linbox.com
(c) 2007-2011 Mandriva, http://www.mandriva.com
#
This file is part of Mandriva Management Console (MMC).
#
MMC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
MMC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with MMC. If not, see <http://www.gnu.org/licenses/>.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

Style guide for PHP code

Coding conventions for the PHP code of all MMC components.

Introduction

This document sets the coding conventions for the PHP code of all
MMC components (like the MMC web interface for example).

Convention from http://pear.php.net/manual/en/standards.php apply too.

Code layout

Indentation: use 4 spaces per indentation level, no tabs allowed.

Encoding: the source code must always use the UTF-8 encoding.

Code indentation and organisation

block “for”, “function”, “switch”, “if”, etc... always end with
opening braces on the same line.

<?php

if ($val == value) {
 echo $val;
} else {
 return -1;
}
foreach ($arrParam as $singleItem) {
 print $singleItem;
}

?>

Function with long args (more than one line size)

<?php

myFunction($value1,
 $value2,
 $morevalue4,
 $val5);

?>

Comments

They are written in english.

They always start with a capitalized first word.

There is always a space between the // and the begin of the comment.
// and /* are fine. Don’t use #.

All functions must have a correct doxygen header.

Naming conventions

	ClassName : CapitalizedWords

	functionName : mixedCase for all function name

	membersValue : member value of a class begin with a “”

PHP language version compatibility

The code must be compatible with PHP 5.0.

PHP error reporting level

All possible PHP errors, warnings and notices must be fixed in the PHP code.
Use these lines in your php.ini file when working on the code to find
them all:

error_reporting = E_ALL
display_errors = On

PHP code copyright header

Here is the header that must be used:

/**
 * (c) 2004-2007 Linbox / Free&ALter Soft, http://linbox.com
 * (c) 2007-2011 Mandriva, http://www.mandriva.com
 *
 * This file is part of Mandriva Management Console (MMC).
 *
 * MMC is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * MMC is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MMC. If not, see <http://www.gnu.org/licenses/>.
 */

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Development

MMC projects release guidelines

This document explains how to release a new mmc project (mmc-core, mds, pulse2).

Release components

What we release is a single tarball by project called:

	mmc-core-VERSION.tar.gz

	mds-VERSION.tar.gz

	pulse2-VERSION.tar.gz

This tarballs contains:

	the mmc-agent, the core MMC modules (audit framework),
the core plugins “base” and “ppolicy” and the MMC web interface framework,
with the “base” and “ppolicy” web modules.

	MDS modules (samba, network, sshlpk, mail, bulkimport, userquota...) python
and web parts

	Pulse 2 modules (inventory, msc, dyngroup, pkgs...) and services
(inventory-server, package-server, imaging-server, scheduler, launcher...)

Preparing a new release

First a release candidate (RC) should be generated to prepare packages and do
QA tests.

1. Bump the version of the project

If the current stable version is 1.1.0 and we want to release 1.2.0 bump
the version to 1.1.90. This will be the first RC before the final 1.2.0
release.

The version number must be updated in several files:

	configure.ac file

	agent/mmc/agent.py file (for mmc-core only)

	agent/mmc/plugin/<PLUGIN_NAME>/__init__.py files (VERSION attribute)

	web/modules/<MODULE_NAME>/infoPackage.inc.php files

2. Prepare the changelog

The Changelog file must be updated. If an entry in the changelog is a bugfix
of a bug reported in the bug tracking system, the ticket number must be written.

3. Documentation update

All the installation/configuration manuals must be updated and checked.

The upgrade procedure is updated:

	http://projects.mandriva.org/projects/mmc/wiki/Pulse2_Upgrade_Procedure

	http://projects.mandriva.org/projects/mmc/wiki/MDS_Upgrade_Procedure

4. Making the tarball

Clean all generated/untracked files
$ git clean -fdx
Do a fresh configure
$./configure --disable-python-check ...
Make the tarball
$ make dist

5. Packaging and tests

Packages are published on a testing repository. The installation/upgrade is
validated by the QA team and developers.

	All python unit tests of the project runs succesfully

	Selenenium tests runs succesfully

	Manual tests are succesfull

Warning

If bugs are found a new RC release must be issued and tests
re-run (in our example it would be 1.1.91 for the next RC)

Fix the bugs then go back to step 1.

6. Publishing the release

Final Bump

	If all tests are successfull the version is bump to the final release number
(1.2.0 in our example).

	A git tag is created after the version bump commit (MMC-CORE-XXX, MDS-XXX,
Pulse2-XXX)

	The final tarball is generated.

Redmine updates

	The final tarballs are put in the public download place:
http://projects.mandriva.org/projects/mmc/files

	Close the version we are going to release with the date of the release.

	Open a new version for the next release.

	If the release provide new plugins new Redmine components must be created

	Make a news for the new release (details of the news can be taken from the
Changelog file)

Packages updates

	The Debian packages repository is updated, for Lenny and Squeeze.

	The RPMs packages repository for Mandriva MES5 and Mandriva Cooker are
updated.

	A bug is open on https://qa.mandriva.com for MES5 official updates (eg:
https://qa.mandriva.com/show_bug.cgi?id=65463)

Communication

	A mail is sent to the XXX-announce mailing list

	The freshmeat entry is updated

	A blog entry can be post on http://blog.mandriva.com

	A news can be proposed on http://www.linuxfr.org and other revelant websites.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

Specifications

	MMC audit framework specification
	Introduction

	Perimeter

	Structure of an audit record

	Audit database schema

	Python API

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	Specifications

MMC audit framework specification

This document specifies the MMC audit framework.

Introduction

An administrator needs to know who did what and when. This feature is highly
needed for the MMC, as it manages users and critical network ressources.

This document defines the perimeter of the MMC audit system, the data structure
and the Python API that will be used to log events.

We won’t talk in this document about any audit GUI design.

Perimeter

First, what is not the MMC audit framework:

	a debugging log for developers. Auditing is not logging.

	a log for all LDAP directory modifications. That’s the role of the LDAP
directory to provide this kind of data. Moreover, the MMC API also works on
non LDAP data, like SAMBA shares for example.

We will record only “atomic” events. For example, If we have a method that
remove a user from all her/his group, we will create a log record for each
removed group instead of a single log telling that the user has been removed
from all groups. This precision is needed to follow the exact life-cycle of
the objects.

Structure of an audit record

An audit record is made of the following datas:

	timestamp: when does this event occured ?

	source: which host is performing the action related to the event and
reporting the event ? This can be the host name of the MMC agent reporting
the event, or the host name where a script using the MMC API is used.

	initiator: who triggered this event ? This can be the user id of the user
connected to the MMC agent, or the effective user id of a script using the
MMC API.

	initiator: which application on which host initiated this event ? The typical
cases: the MMC web interface on computer laptop.example.net, the python
script /root/populate_ldap.py on computer mds.example.net.

	event: what happened ? To designate an event, we will use a simple label.
For example, the “add a user action” from the MMC “base” API is called
“BASE_ADD_USER”.

	action result: was the operation triggering the event succesfull ?

	target: which were the object affected by the event ? An object could be a
user, a group, a user LDAP attribute, etc.

	what were the previous values of the affected targets, and what are the
current values ? For example, if we modified the value of a LDAP attribute,
we will save its previous and current value in the audit record.

Audit database schema

We will provide a MySQL and a PostgreSQL database backend, thanks to the
python SQLAlchemy library.

Here is the database schema:

[image: ../_images/audit-database-schema.png]
Table description:

	initiator: application (MMC web interface for example), IP address and
hostname of the server that initiated the connection;

	source: hostname of the machine that received the action that triggered the
event, and which is reporting the event;

	module: module name owner of the event. If the event is linked to the MMC
SAMBA module, the name will be MMC-SAMBA;

	event: name of the reported event, for example “SAMBA_LOCK_USER”. Each event
is linked to its module;

	type: name of a object type, for example “USER”, “GROUP”, ...

	object: URI of a object affected by the audit record. If the object is a LDAP
object, the URI is the LDAP DN of the object. For other type of object, a URI
system must be found. Each object has a type. For example, the object
representing the LDAP user “foo” has the URI “uid=foo,ou=Users,dc=mds”
and the type “USER”.

	object_log: link a log entry to object entries;

	previous_value: the previous value (if applicable) of the object before the
audit record;

	current_value: the value (if applicable) of the object after the audit record;

	parameters: additional event parameters (optional);

	log: a log is linked to an initiator, a source, an event, one or multiple
object_log rows, and zero or multiple parameters. The first object_log row
is always linked to the object representing the user that triggered the event.
The “result” column is a boolean, which value is false if the operation
linked to the event failed.

How do we address object in a log ?

There is a little problem when addressing object in a log. For example, we
want to record that the LDAP attribute called “fooattr” from the user “foo”
has been deleted. How do we implement that using this database structure ?

When storing the log data into the database, we will simply connect the object
representing the LDAP attribute “fooattr” to the object representing the user
“foo” thanks to the fk_parent field.

How do we know the current execution context ?

All XML-RPC calls received by the MMC agent are executed in threads. Each
time a new thread is started, the current user session is attached to the
thread. From the session the MMC agent knows which user triggered an event and
the initiator (the MMC web interface in most case).

When using the MMC API without the MMC agent (no XML-RPC calls), the initiator
is the current host and the current application (sys.argv[0]), and the user is
the current effective user id number.

Python API

AuditFactory singleton class

We provide a Singleton class called “AuditFactory” that allows to access the
audit framework. It reads the “audit” section of
/etc/mmc/plugins/base.ini file that defines the database connection.

For compatibility, the audit framework can be disabled.

Logging an event

The AuditFactory class owns this method to log an event:

def log(self, module, event, objects = None, current=None, previous=None, parameters = None)

	module: module name owner of the event

	event: event name

	objects: objects affected by the event. the object is represented by a couple
(object name, object type). For example, the user “foo” is ("foo", "USER").
If the object is a child of another object, its parent must be prepended in a
list. For example, the attribute “fooattr” of the user “foo” is
[("foo", "USER"), ("fooattr", "ATTRIBUTE")]

	previous: previous value of the object affected by the event;

	current: current value of the object affected by the event;

	parameters: parameters used when performing the action that triggered the event;

This method creates all needed rows into the audit database. It should be called
just before an action is performed. It sets the log database result field to
False to define that the action has not been performed or has failed.

This method returns an AuditRecord object, that has only one method called
“commit”, that should be use when the action is done:

Example

from mmc.core.audit import AuditFactory
Record to the audit database the action being performed
r = AuditFactory().log("MODULE_TEST", "TEST_AUDIT")
Do domething
...
Flag the action has successfull
r.commit()

Declaring module events and type

Each MMC API module have a audit.py Python file that defines all events
and types managed by the module.

Here is an extract of what contains the audit.py file for the
“base” MMC module:

class AuditActions:
 BASE_ADD_USER = u'BASE_ADD_USER'
 BASE_ENABLE_USER = u'BASE_ENABLE_USER'
 ...

class AuditTypes:
 USER = u'USER'
 GROUP = u'GROUP'
 ...

AA = AuditActions
AT = AuditTypes
PLUGIN_NAME = u'MMC-BASE'

Remarks:

	All the strings must be unicode strings, in uppercase.

	Actions (events) name starts with the name of the plugin

Defining object URI

An object URI must allow us to identify and address a unique object in the
audit database, to record and track all its changes.

For LDAP objects, it is logical to use the object DN as the URI to store into
the database.

But the MMC allows to modify objects which are not into the LDAP, for example
SAMBA shares. For this kind of objects, a method to build an URI must be found.

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

QA

	MDS QA
	Selenium tests

	Manual tests

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Mandriva Management Console 3.1.1 documentation

 	QA

MDS QA

This page describes how to test the MDS interface before a release.

Selenium tests

Install the Selenium IDE plugin for Firefox at http://seleniumhq.org.

Running the test suite

	Open Selenium IDE (Ctrl+Alt+S)

	Open the test suite from the repository
(mmc/mds/tests/selenium/suite/all_test.html)

	Browse to the MMC login page on your test server. The MDS installation must be
clean with samba, mail and network modules. Root password must be secret.

	Play the full test suite

Manual tests

Manual tests validate basic usage of MSS (Mandriva Server Setup)
and MDS on MES 5.2. We basically check that the setup of SAMBA, bind9,
dhcpd, postfix, dovecot, OpenLDAP with MDS done by MSS is OK.

Environment setup

A private network with one MBS 1.0 server and one Windows XP or 7 client.

The network and the machines can of course be virtualized (it’s
easy to setup with VirtualBox).

	The MBS server is a base installation from the DVD + all updates

	The private network will be 192.168.220.0/24 in this document

	The MBS server has a static IP of 192.168.220.10

Enable the testing repo to be able to get the MDS test packages.

Installation & configuration

From mss (https://192.168.220.10:8000) select and install the following
modules: Samba, DNS & DHCP, Mail, Webmail.

	MDS domain: test.local

	MDS password: test$!

	SAMBA password: smbTest!

	Mail networks: 192.168.220.0/255.255.255.0

	DNS networks: 192.168.220.0/255.255.255.0

The configuration must be successfull.

MDS tests

	Login in MDS at http://192.168.220.10/mmc/ with root/test$!

	Add a user:
	Login: user1

	Password: test1

	Mail: user1@example.com

	Edit the user and set some other fields:
	Last name, phone...

	Put the user in a secondary group then remove if from the group.

	Add a second user:
	Login: user2

	Password: test2

	Mail: user2@example.com

	Alias: contact@example.com

	Add the mail domain example.com

	Login in roundcube (http://192.168.220.10/roundcubemail)
with user1@example.com.
	send a mail to user2@example.com

	send a mail to contact@example.com

	Login in roundcube with user2@example.com and check the mails

	Edit the MMC ACLs of user1 and check the “Change password” page
	Login the MMC with user1 and change his password

	Create a DNS zone

	FQDN: example.com

	Server IP: 192.168.220.10

	Network address: 192.168.220.0

	Network mask: 24

	Create DHCP subnet and reverse zone

	Edit the DHCP subnet and add a dynamic pool from
192.168.220.50 to 192.168.220.60

	Restart both services in Network Services Management

	Boot the Windows client and check if it gets an IP

	Convert the dynamic lease of the client to a static lease. Set the
DNS name to win.example.com.

	Renew the lease on the windows client (ipconfig /renew) then
ping win.example.com.

	Join the computer to the MES5DOMAIN domain (admin/smbTest!)

	Login with user1 on the Windows client

	Change user1 password on the Windows client

	Login the MMC with user1 new password

	Change user1 password on the MMC interface

	Logout/Login with user1 on the Windows client

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Mandriva Management Console 3.1.1 documentation

Index

 Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

 _static/dashboard.png
*Wﬁy-ﬁ

Dashboard Groups

Disk usage

/ (dev/sdat)

® 3.4G8 used
© 741.9MB free

/home (/dev/sda6)

® 207.4MB used
® 3.4G8 free

1 Agent 3.0.96

wail Shares

Shortcuts

Users

« Adda user
* Change user password

Graups

« Adda aroup

Shares

« Add a share
o Listshares

Network

 DNS zones
« DHCP subnets

Q H ™

Firewall Services wanarve MBS
Your product General
Mandriva Business Server Soho foobar on Mandriva Business
Server 1.0
License Uptime : 0:07:31.769692
Users:3/5

Services

Firewall management : 1
inactive service

System updates

New packages updates are
available.

update

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Mandriva Management Console 3.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Jean-Philippe Braun, Jean Parpaillon, Nicolas Rueff, Cédric Delfosse.
 Last updated on Oct 21, 2014.
 Created using Sphinx 1.2.2.

_images/audit-database-schema.png
initiator
1.0 +id: int(10)
-0l application: char(100)
+ipaddress: char(15)
+hostname: char(15)
“Prinary Key(i): p
source
1,0035d: int(10)
+hostname: char(15)
“Prinary Key(i): p
record L1
- 11 event module
+id: int(10) 1,1 1,n
+date: datetime 1.1 o.n +id: int(10) - so{+id: int(10)
+result: boolean = ~—+name: char(100) +name: char (100)
+Primary Key(id): pk +Foreign Key(fk module): Tk +Primary Key(id): pk
+Forelgn Key(k source): 1k || sPrinary Key(ia): pk
+Foreign Key(fk event): fk S
+Foreign Key(fk object user): fk
Tn object_log
12 [Ty object e
+Primary key(id): pk 15|71 Int(10) 11 1a
11 +Foreign Key(Tk object). uri: varchar (100) A Lo o
+Foreign Key(fk record): +Prinary Key(id): pk +type: char
parameters T +Foreign Key(fk_type): fk +Primary Key(id): pk
+id: int(11) +Foreign Key(fk parent)(): fk
+name: char (100) o1 o.n
+value: char(255) 1,1
Foreign Key(Tk recora)s Tk current_value
+Primary Key(id): pk +value: char(1024) child of
Primary Key(1a): pK
+Foreign Key(object tog 1d)(): Tk
11
previous_value
+value: char(1024)

“Primary Key(1d): pk
+Foreign Key(object log_id)(): Tk

_images/dashboard.png
*Wﬁy-ﬁ

Dashboard Groups

Disk usage

/ (dev/sdat)

® 3.4G8 used
© 741.9MB free

/home (/dev/sda6)

® 207.4MB used
® 3.4G8 free

1 Agent 3.0.96

wail Shares

Shortcuts

Users

« Adda user
* Change user password

Graups

« Adda aroup

Shares

« Add a share
o Listshares

Network

 DNS zones
« DHCP subnets

Q H ™

Firewall Services wanarve MBS
Your product General
Mandriva Business Server Soho foobar on Mandriva Business
Server 1.0
License Uptime : 0:07:31.769692
Users:3/5

Services

Firewall management : 1
inactive service

System updates

New packages updates are
available.

update

_images/shorewall.png
Dashboard Grows Mail Shares Firewall | Services wananaMBS
Poli
@ tntemal . Server Y
The policy applies if no rule match the request.
Internal (1an0) — Server (w) | Drop Kl
Internal iant) — Server (w) | Drop El
Rules L ©
Elments 110 10 - Tt 20 (page 1 /2) 12) Next
Decision Service Source Protocol Port(s) Actions
AccepT tano top. 8000 X
AccepT tant top 8000 X
AccepT ssH tano X
AccepT ssH tant X
AccepT e tano X
AccepT e tant X
AccepT suTp tano X
AccepT TP tant X
AccepT suTPS tano X
AccepT sTPS tant X
12 Next
Add rule
Decision | Accept El
Source | Al Kl
Service El

1 Agent 3.0.96

_static/shorewall.png
Dashboard Grows Mail Shares Firewall | Services wananaMBS
Poli
@ tntemal . Server Y
The policy applies if no rule match the request.
Internal (1an0) — Server (w) | Drop Kl
Internal iant) — Server (w) | Drop El
Rules L ©
Elments 110 10 - Tt 20 (page 1 /2) 12) Next
Decision Service Source Protocol Port(s) Actions
AccepT tano top. 8000 X
AccepT tant top 8000 X
AccepT ssH tano X
AccepT ssH tant X
AccepT e tano X
AccepT e tant X
AccepT suTp tano X
AccepT TP tant X
AccepT suTPS tano X
AccepT sTPS tant X
12 Next
Add rule
Decision | Accept El
Source | Al Kl
Service El

1 Agent 3.0.96

_static/minus.png

_static/comment.png

_static/up.png

_static/comment-close.png

_static/audit-database-schema.png
initiator
1.0 +id: int(10)
-0l application: char(100)
+ipaddress: char(15)
+hostname: char(15)
“Prinary Key(i): p
source
1,0035d: int(10)
+hostname: char(15)
“Prinary Key(i): p
record L1
- 11 event module
+id: int(10) 1,1 1,n
+date: datetime 1.1 o.n +id: int(10) - so{+id: int(10)
+result: boolean = ~—+name: char(100) +name: char (100)
+Primary Key(id): pk +Foreign Key(fk module): Tk +Primary Key(id): pk
+Forelgn Key(k source): 1k || sPrinary Key(ia): pk
+Foreign Key(fk event): fk S
+Foreign Key(fk object user): fk
Tn object_log
12 [Ty object e
+Primary key(id): pk 15|71 Int(10) 11 1a
11 +Foreign Key(Tk object). uri: varchar (100) A Lo o
+Foreign Key(fk record): +Prinary Key(id): pk +type: char
parameters T +Foreign Key(fk_type): fk +Primary Key(id): pk
+id: int(11) +Foreign Key(fk parent)(): fk
+name: char (100) o1 o.n
+value: char(255) 1,1
Foreign Key(Tk recora)s Tk current_value
+Primary Key(id): pk +value: char(1024) child of
Primary Key(1a): pK
+Foreign Key(object tog 1d)(): Tk
11
previous_value
+value: char(1024)

“Primary Key(1d): pk
+Foreign Key(object log_id)(): Tk

