

Mandriva Management Console documentation

Mandriva Management Console (MMC) is a framework used in Mandriva Directory
Server and Pulse 2 projects that provides plugins for MMC.

If you plan to install MDS plugins or Pulse 2 plugins you
first need to install and configure MMC (see section Core).

Installation and configuration

	Core
	Introduction

	Installation

	MMC configuration

	Audit framework

	Dashboard plugin

	Password policy plugin

	Services plugin

	Configuration files

	Using MMC

	Mandriva Directory Server
	Introduction

	Mail plugin

	Network plugin

	SAMBA plugin

	Shorewall plugin

	Squid plugin

	SSH public keys plugin

	Userquota plugin

	Configuration files

	Pulse 2
	Introduction

	Installation

	Configuration files

Other documentation

	Development
	Contributing to MMC with git

	Writing MMC scripts

	How to write a python module for the MMC agent

	How to write a PHP module for the MMC web interface

	Internationalization and localization

	Style guide for python code

	Style guide for PHP code

	MMC projects release guidelines

	Specifications
	MMC audit framework specification

	QA
	MDS QA

Core

	Introduction

	Installation
	Repositories configuration and packages installation

	Installation from source tarball

	LDAP server configuration

	NSS LDAP configuration

	MMC configuration
	Web interface configuration

	MMC agent configuration

	MMC « base » plugin configuration

	About firewalling

	About SE Linux

	Audit framework

	Dashboard plugin
	Installation

	MMC « dashboard » plugin

	MMC « dashboard » plugin configuration

	Password policy plugin
	Installation

	OpenLDAP configuration for password policies

	MMC « ppolicy » plugin configuration

	Password Policy checker module

	Using password policies with SAMBA

	Services plugin
	Installation

	MMC « services » plugin

	MMC « services » plugin configuration

	Configuration files
	MMC agent configuration file

	MMC base plugin configuration file

	MMC ppolicy (Password Policy) plugin configuration file

	MMC web configuration file

	Using MMC
	Controlling mmc-agent

	Administrator login to the MMC web interface

	MMC agent and Python plugins inter-dependencies

	How to disable a plugin

Introduction

The MMC (Mandriva Management Console) is made of two parts:

	An agent running on the machine to manage. We call it « MMC agent ».
The agent exports to the network several plugins that allow to manage the
machine. Of course, there can be multiple agents running on the network.
The agent and its plugins are written in Python.

	A web interface, that talks to the agent(s) using XML-RPC.
The interface is written in PHP, and use the scriptaculous and prototype
frameworks to provide an AJAX experience across all major browsers including
Internet Explorer 6.

In this document, we will first explain how to install and configure the MMC
agent and the base plugins, and then how to install the web interface.

The MMC core provides 3 plugins:

	base : a plugin for managing users and groups in LDAP

	ppolicy : a plugin for managing user password policies

	audit : a framework for recording all operations done in the MMC interface

Note

Other plugins are available in the Mandriva Directory Server and Pulse 2 projects.

These installations instructions are generic: this means they should work on
most Linux distributions.

If you have any installation issues, please use the MDS users mailing list [http://mds.mandriva.org/wiki/MailingLists].

Installation

How to install the MMC (Mandriva Management Console) on a Linux distribution

Repositories configuration and packages installation

Mandriva users are lucky

... because Mandriva RPM packages for the MDS and the MMC are available.

Packages for Mandriva 2010.0, 2010.2, 2011.0 and Cooker are available on Mandriva
official repositories. You will find an official mirror using the Mandriva
mirror finder module [http://api.mandriva.com/mirrors/list.php].

You can also add the repositories with the following command:

urpmi.addmedia --distrib --mirrorlist '$MIRRORLIST'

To install the MMC base packages, just type:

urpmi mmc-agent mmc-web-base python-mmc-base

Debian packages

For Debian Squeeze, add this in your sources.list:

deb http://mds.mandriva.org/pub/mds/debian squeeze main

For Debian Wheezy:

deb http://mds.mandriva.org/pub/mds/debian wheezy main

To install MMC base packages, just type:

apt-get update
apt-get install mmc-agent mmc-web-base python-mmc-base

Other packages

We also provide packages for other distribution trough OpenBuildSystem here :

	MMC core [http://software.opensuse.org/download.html?project=home:eonpatapon:mds&package=mmc-core]

	MDS plugins [http://software.opensuse.org/download.html?project=home:eonpatapon:mds&package=mds]

Note

CentOS DAG repository

For some packages, you will need to add the DAG repository to yum. Create
a file named /etc/yum.repos.d/DAG.repo containing:

DAG Repository for RedHat Enterprise 4 / CentOS 4
[dag]
name=DAG Repository
baseurl = http://apt.sw.be/redhat/el$releasever/en/$basearch/dag
gpgkey=http://dag.wieers.com/packages/RPM-GPG-KEY.dag.txt
gpgcheck=1
enabled=0

Packages naming conventions

Here are the packages naming conventions:

	mmc-agent: the MMC agent package

	python-mmc-PLUGIN: MMC agent plugin

	mmc-web-PLUGIN: web interface plugin

Note

Sample configuration files

All MMC related sample configuration files are available in the
python-mmc-base package, in the directory
/usr/share/doc/python-mmc-base/contrib/ or on our
repository [http://github.com/mandriva-management-console/mmc/tree/master/core/agent/contrib].

You will find there OpenLDAP, SAMBA and Postfix configuration files and also
OpenLDAP schemas.

Installation from source tarball

Note

If you are using packages you can skip this part

Pre-requisites

This python modules are needed for MMC to run :

	python-twisted-web

	python-ldap

	pylibacl

	pyopenssl

	python-gobject

The MMC web interface is written in PHP4. Basically, you just need to install
an Apache 2 server with PHP5 support.

The XML-RPC module of PHP is needed too.

Installation

Get the current tarball at this URL: ftp://mds.mandriva.org/pub/mmc-core/sources/current/

tar xzvf mmc-core-x.y.z.tar.gz
cd mmc-core-x.y.z
./configure --sysconfdir=/etc --localstatedir=/var
make
make install
tar xzvf mds-x.y.z.tar.gz

If you want also MDS modules:

cd mds-x.y.z
./configure --sysconfdir=/etc --localstatedir=/var
make
make install

The default $PREFIX for installation is /usr/local. You can change it
on the ./configure line by adding the option --prefix=/usr for example.

Here are how the files are installed:

	$PREFIX/sbin/mmc-agent: the MMC agent

	$PREFIX/lib/mmc/: helpers for some MMC plugins

	/etc/mmc/: all MMC configuration files. There files are sample files
you will need to edit.

	/etc/init.d/mmc-agent: MMC agent init script

	$PREFIX/lib/pythonX.Y/site-packages/mmc: MMC Python libraries and
plugins.

	$PREFIX/lib/pythonX.Y/site-packages/mmc/plugins/: MMC Python plugins

	$PREFIX/share/mmc/: all MMC web interface related files
(PHP, images, ...l)

	$PREFIX/share/mmc/modules/: MMC web interface plugins

	/etc/mmc/mmc.ini: MMC web configuration file

LDAP server configuration

MMC currently supports OpenLDAP.

One LDAP schema called MMC schema is mandatory.
This schema and others are available in the
/usr/share/doc/mmc/contrib/base/ directory provided by
the python-mmc-base package.

Mandriva

The OpenLDAP configuration can be easily done using the openldap-mandriva-dit-package.

urpmi openldap-mandriva-dit
...
/usr/share/openldap/scripts/mandriva-dit-setup.sh
Please enter your DNS domain name [localdomain]:
mandriva.com
Administrator account
The administrator account for this directory is
uid=LDAP Admin,ou=System Accounts,dc=mandriva,dc=com
Please choose a password for this account:
New password: [type password]
Re-enter new password: [type password]
Summary
=======
Domain: mandriva.com
LDAP suffix: dc=mandriva,dc=com
Administrator: uid=LDAP Admin,ou=System Accounts,dc=mandriva,dc=com
Confirm? (Y/n)
Y
config file testing succeeded
Stopping ldap service
Finished, starting ldap service
Running /usr/bin/db_recover on /var/lib/ldap
remove /var/lib/ldap/alock
Starting slapd (ldap + ldaps): [OK]

And you’re done, the LDAP directory has been populated and the LDAP service
has been started.

Some tweaks needs to be done to the LDAP configuration so that the LDAP service
suits to the MDS.

First, copy the MMC LDAP schema you need to the LDAP schemas directory.

cp /usr/share/doc/mmc/contrib/base/mmc.schema /etc/openldap/schema/

Then, add these line to the file /etc/openldap/schema/local.schema:

include /etc/openldap/schema/mmc.schema

Then, to avoid LDAP schemas conflicts, comment or remove these lines at the
beginning of the file /etc/openldap/slapd.conf:

#include /usr/share/openldap/schema/misc.schema
#include /usr/share/openldap/schema/kolab.schema
#include /usr/share/openldap/schema/dnszone.schema
#include /usr/share/openldap/schema/dhcp.schema

Last, comment or remove these lines at the end of the file
/etc/openldap/mandriva-dit-access.conf:

#access to dn.one="ou=People,dc=mandriva,dc=com"
attrs=@inetLocalMailRecipient,mail
by group.exact="cn=MTA Admins,ou=System Groups,dc=mandriva,dc=com" write
by * read

To check that the LDAP service configuration is right, run slaptest:

slaptest
config file testing succeeded

Now you can restart the LDAP service:

service ldap restart
Checking config file /etc/openldap/slapd.conf: [OK]
Stopping slapd: [OK]
Starting slapd (ldap + ldaps): [OK]

Debian

When installing the slapd package, debconf allows you to configure
the root DN of your LDAP directory, set the LDAP manager password
and populate the directory. By default debconf will not ask you to
configure the root DN, you can run dpkg-reconfigure for this.
If you choose “mandriva.com” as your domain, the LDAP DN suffix
will be “dc=mandriva,dc=com”.

dpkg-reconfigure slapd

After that you only need to include the mmc.schema in slapd
configuration and you are done.

Note

Debian Squeeze and later

Debian’s OpenLDAP uses its own database for storing
its configuration. So there is no more slapd.conf.
You can use the mmc-add-schema script to load new schema in
the OpenLDAP configuration database:

mmc-add-schema /usr/share/doc/mmc/contrib/base/mmc.schema /etc/ldap/schema/
Adding schema for inclusion: mmc... ok

You can also write a regular slapd.conf file like before, and issue
the followind commands to convert the file in the new format:

/etc/init.d/slapd stop
rm -rf /etc/ldap/slapd.d/*
slaptest -f /path/to/slapd.conf -F /etc/ldap/slapd.d
chown -R openldap.openldap /etc/ldap/slapd.d
/etc/init.d/slapd start

Other distributions

Note

OpenLDAP example configuration

You will find an example of OpenLDAP configuration in the directory
agent/contrib/ldap/ of the mmc-core tarball.

Note

Already existing directory

If you already have an OpenLDAP directory, all you need to do
is to include the mmc.schema file.

Get the file mmc.schema from the
/usr/share/doc/mmc/contrib/base
directory, and copy it to /etc/openldap/schema/
(or maybe /etc/ldap/schema/).

Include this schema in the OpenLDAP configuration, in
/etc/ldap/slapd.conf
(or maybe /etc/openldap/slapd.conf):

include /etc/openldap/schema/mmc.schema

This schema must be included after the
inetorgperson.schema file.

In the OpenLDAP configuration file, we also define the LDAP DN
suffix, the LDAP manager (rootdn) and its password (rootpw):

suffix "dc=mandriva,dc=com"
rootdn "cn=admin,dc=mandriva,dc=com"
rootpw {SSHA}gqNR92aL44vUg8aoQ9wcZYzvUxMqU6/8

The SSHA password is computed using the slappasswd command:

slappasswd -s secret
{SSHA}gqNR92aL44vUg8aoQ9wcZYzvUxMqU6/8

Once the OpenLDAP server is configured, the base LDAP directory
architecture must be created. Create a file called
/tmp/ldap-init.ldif containing:

dn: dc=mandriva,dc=com
objectClass: top
objectClass: dcObject
objectClass: organization
dc: mandriva
o: mandriva
dn: cn=admin,dc=mandriva,dc=com
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP Administrator
userPassword: gqNR92aL44vUg8aoQ9wcZYzvUxMqU6/8

The userPassword field must be filled with the output of the
slappasswd command. Now we inject the LDIF file into the directory:

/etc/init.d/ldap stop
slapadd -l /tmp/ldap-init.ldif
chown -R ldap.ldap /var/lib/ldap (use the openldap user for your distribution)
/etc/init.d/ldap start

Note

LDAP suffix

In this example, the LDAP suffix is dc=mandriva,dc=com. Of course, you can
choose another suffix.

Note

Changing the OpenLDAP manager password

You can’t change this password using the MMC interface. You must use this
command line:

$ ldappasswd -s NewPassword -D "cn=admin,dc=mandriva,dc=com" -w OldPassword -x cn=admin,dc=mandriva,dc=com

NSS LDAP configuration

To use LDAP users and groups, the OS needs to know where to look in LDAP.

To do this, /etc/nsswitch.conf and /etc/ldap.conf
(/etc/libnss-ldap.conf for Debian based distros) should be configured.

Note

On Debian install the package libnss-ldap

Your /etc/nsswitch.conf should look like this:

passwd: files ldap
shadow: files ldap
group: files ldap
hosts: files dns
bootparams: files
ethers: files
netmasks: files
networks: files
protocols: files
rpc: files
services: files
netgroup: files
publickey: files
automount: files
aliases: files

Your /etc/ldap.conf:

Note

On Debian wheezy the configuration is located in

/etc/libnss-ldap.conf

host 127.0.0.1
base dc=mandriva,dc=com

MMC configuration

Web interface configuration

For a full documentation of the /etc/mmc/mmc.ini file see
MMC web configuration file.

What you may change in this file is:

	«

 Audit framework

Audit framework

Note

The configuration of the audit framework is optionnal

The MMC audit framework allows to record all users operations
made through the MMC agent, and so the MMC web interface. These
operations are all loggued: LDAP modifications, all filesystem
related modifications, and service management (stop, start, ...)

The Python SQLAlchemy library version 0.5.x/0.6.x is required for the audit
framework. The Python / MySQL bindings are also needed. On Debian install
the following packages:

apt-get install python-mysqldb python-sqlalchemy

The audit framework is configured in the base.ini configuration file,
and is disabled by default. To enable it, uncomment the audit
section. It should look like:

[audit]
method = database
dbhost = 127.0.0.1
port = 3306
dbdriver = mysql
dbuser = audit
dbpassword = audit
dbname = audit

The mmc-helper tool will allow you to create
the dabatase and to populate it with the audit tables easily.

To create the MySQL database:

mmc-helper audit create
-- Execute the following lines into the MySQL client
CREATE DATABASE audit DEFAULT CHARSET utf8;
GRANT ALL PRIVILEGES ON audit.* TO 'audit'@localhost IDENTIFIED BY
'audit';
FLUSH PRIVILEGES;

Just execute the printed SQL statement in a MySQL client and the
database will be created. Note that the base.ini is read to set the
audit database name, user and password in the SQL statements.

On most Linux distribution, the “root” user has administrative
access to the local MySQL server. So this one liner will often be enough:

mmc-helper audit create | mysql

Once created, the audit database tables must be initialized with this command:

mmc-helper audit init
INFO:root:Creating audit tables as requested
INFO:root:Using database schema version 2
INFO:root:Done

At the next start, the MMC agent will connect to the audit database and record
operations.

 Dashboard plugin

Dashboard plugin

Note

The configuration of the dashboard plugin is optionnal

Installation

Install the packages python-mmc-dashboard and mmc-web-dashboard.
Restart the mmc-agent service.

MMC « dashboard » plugin

The dashboard plugin will replace the legacy MMC-CORE home page with
a page that can display panels from different MMC plugins.

Every MMC plugin can register its panels to the dashboard.

Example of the the MBS SOHO dashboard:

[image: ../../_images/dashboard.png]

MMC « dashboard » plugin configuration

Like every MMC plugin the configuration can be found in
/etc/mmc/plugins/dashboard.ini

The disabled_panels option can contain a list of panels that will be
disabled. For example, to disable the shortcut and general panel:

disabled_panels = shortcut general

 Password policy plugin

Password policy plugin

Note

The configuration of the ppolicy plugin is optionnal

Installation

Install the packages python-mmc-ppolicy and mmc-web-ppolicy.

OpenLDAP configuration for password policies

On Mandriva, if you used the mandriva-dit setup scripts, the
password policy configuration is already done. If not, here are
some instructions:

You must add this to your OpenLDAP slapd.conf configuration file:

Include password policy schema
include /path/to/openldap/schema/ppolicy.schema
...
Load the ppolicy module
moduleload ppolicy
...
Add the overlay ppolicy to your OpenLDAP database
database bdb
suffix "dc=mandriva,dc=com"
...
overlay ppolicy
ppolicy_default "cn=default,ou=Password Policies,dc=mandriva,dc=com"

Beware that the ppolicy_default value must match the options “ppolicyDN” and
“ppolicyDefault” you set into the ppolicy.ini file.

MMC « ppolicy » plugin configuration

For a full description of the MMC ppolicy plugin configuration file see
MMC ppolicy (Password Policy) plugin configuration file.

The only thing you’ll have to modify in the configuration file
is the “ppolicyDN” option if needed. The OU parent must be an existing
DN. If the OU or the default password policy object doesn’t
exist, the MMC agent will create them when it starts.

Password Policy checker module

This module has only been built and tested on Mandriva and Debian. It is
installed as /usr/lib/openldap/mmc-check-password.so.

If password quality checking is enabled on the password
policy, OpenLDAP calls this module to check password quality
when a user password is changed using the LDAP Password Modify
Extended operation. MDS will change user passwords with this
operation if you set “passwordscheme = passmod” in
the base.ini configuration file.

To check a password, mmc-check-password.so will launch the
command /usr/bin/mmc-password-helper. The password will pass
the quality checks if it contains at least one number, one upper case
character, one lower case character and one special character (like #, $, etc.).
The password must not contains the same character twice. If python-cracklib
is available, a cracklib check is also done.

The mmc-password-helper tool

This tool allows to check a password from the command line.
For example:

% echo foo | mmc-password-helper -c
% echo $?
1
Exit code is set to 1 if the password fails quality checks, else 0
Use -v for more
echo foo | mmc-password-helper -c -v
the password must be 8 or longer
% echo $?
1

The tool also generates good passwords:

% mmc-password-helper -n
1NjY0MD:
Use -l to change the length (default is 8)
% mmc-password-helper -n -l 12
2ND=3OTcwMjY
% mmc-password-helper -n | mmc-password-helper -c
% echo $?
0
Generated password will always succeed quality checks :)

Using password policies with SAMBA

If the SAMBA module is installed you can benefit of the LDAP password policies
when a user changes his password from any Windows machine in the domain or via
the MMC web interface.

Since SAMBA can’t handle multiple password policies the MMC won’t set any SAMBA
password policies in the SAMBA domain ldap entry. But when SAMBA will try to
change the user password in the LDAP, standard LDAP password policies applies.

The OpenLDAP password policies applies when the user password is changed with
the “passmod” LDAP operation and when the user running the “passmod” is not the
OpenLDAP rootdn.

If the MMC is binded to OpenLDAP with the rootdn as the administrator you will
be able to change passwords from the MMC interface without any password policy
checks. However, password poclicy is applied on the “change user password page”
for normal users.

Note

Password synchronization

Usually the password synchronisation between the SAMBA password and
the LDAP password is done by SAMBA itself. When a user changes his password
SAMBA updates the sambaNTPassword attribute and run the “passmod” LDAP operation
to change the userPassword attribute. This synchronization is done when
ldap sync password = yes is set in SAMBA configuration.
The problem with this method is that if the password does not pass the password
policy check, the SAMBA password will be updated (as it is not changed by a
“passmod” operation) but the userPassword attribute won’t.

The second method to synchronize the password is to set ldap sync password = only
in SAMBA configuration. In this case, SAMBA will only run the “passmod” LDAP operation
when the user changes his password and won’t update the sambaNTPassword attribute of the user.
To update this attribute the OpenLDAP overlay smbk5pwd must be used. This overlay will
intercept “passmod” operations and update the SAMBA password automatically only if
the userPassword attribute has been updated successfully.

In conclusion, in order to use LDAP password policies with SAMBA you have to
make sure that:

	SAMBA is not binded to OpenLDAP with the rootdn

	The password scheme option is set to “passmod” in
/etc/mmc/plugins/base.ini

	Prefer using the ldap sync password = only method with the smbk5pwd
overlay to make sure that passwords are always in sync (Shares ->
General options -> Expert mode -> LDAP password sync)

The configuration of the smbk5pwd overlay is pretty forward. In your slapd.conf
just add :

moduleload smbk5pwd
[...]
overlay smbk5pwd
smbk5pwd-enable samba
overlay ppolicy
ppolicy_default "cn=default,ou=Password Policies,dc=mandriva,dc=com"
[...]

Note

The overlays order is important. Overlays will be called in the
reverse order that they are defined. So ppolicy check must be done before
smbk5pwd synchronization.

SAMBA domain policies

The SAMBA domain policies attributes are synchronized with the default OpenLDAP
password policies by the MMC:

	pwdMinLength -> sambaMinPwdLength

	pwdMaxAge -> sambaMaxPwdAge

	pwdMinAge -> sambaMinPwdAge

	pwdInHistory -> sambaPwdHistoryLength

	pwdMaxFailure -> sambaLockoutThreshold

	pwdLockoutDuration -> sambaLockoutDuration

 Services plugin

Services plugin

Note

The configuration of the services plugin is optionnal

Installation

Install the packages python-mmc-services and mmc-web-services.

Warning

This plugin requires systemd.

If systemd is not available the plugin won’t be loaded.

MMC « services » plugin

This plugin allows the administrator to interact with the system services
installed on the server. The plugin uses systemd DBUS interface to interact
with services.

Currently you can start, stop, restart and reload services. You can also
check any service log from the MMC interface.

MMC « services » plugin configuration

Like every MMC plugin the configuration can be found in
/etc/mmc/plugins/services.ini

The plugin is disabled by default so you need to set disable to 0.

The plugin uses journalctl to display services logs in the interface.
Check that the path to journalctl is correct for your system.

The blacklist option is used to hide any services in the interface. We
don’t display the OpenLDAP service because restarting it from the MMC is not
reliable since the MMC depends on it.

 Configuration files

Configuration files

	MMC agent configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section « daemon »

	Sections related to the Python logging module

	How to enable full debug in MMC agent

	MMC base plugin configuration file
	Introduction

	Obfuscated password support in configuration files

	Configuration file sections

	Section « ldap »

	Section « backup-tools »

	Section « audit »

	Section « hooks »

	Section « userdefault »

	User authentication

	User provisioning

	Subscription informations

	MMC ppolicy (Password Policy) plugin configuration file
	Introduction

	Configuration file sections

	Section « main »

	Section « ppolicy »

	Section « ppolicyattributes »

	MMC web configuration file
	Introduction

	Configuration file sections

	Section «

 MMC agent configuration file

MMC agent configuration file

This document explains the content of the MMC agent configuration file.

Introduction

The MMC agent is a XML-RPC server that exports to the network the API provided
by the MMC python plugins.

Its configuration file is /etc/mmc/agent/config.ini. This file must be
readable only by root, as it contains the login and password required to connect
to the MMC agent.

Like all MMC related configuration file, its file format is INI style. The file
is made of sections, each one starting with a « [sectionname] » header. In each
section options can be defined like this « option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

/etc/mmc/agent/config.ini available sections:

	Section name
	Description
	Optional

	main
	MMC agent main option
	no

	daemon
	MMC agent daemon option
	no

All the other sections (loggers, handlers, ...) are related to Python language
logging framework. See the Python documentation [http://docs.python.org/lib/logging-config-fileformat.html]
for more informations.

Section « main »

Available options for the “main” section:

	Option name
	Description
	Optional
	Default value

	host
	IP where the MMC agent XML-RPC server listens to incoming connections
	No
	

	port
	TCP/IP port where the MMC agent XML-RPC server listens to incoming connections
	No
	

	login
	login to connect to the MMC agent XML-RPC server
	No
	mmc

	password
	password to connect to the MMC agent XML-RPC server
	No
	s3cr3t

	enablessl
	Enable TLS/SSL for XMLRPC communication. If disabled, the XMLRPC traffic is not encrypted.
	yes
	0

	verifypeer
	If SSL is enabled and verifypeer is enabled, the XML-RPC client that connects to the MMC agent XML-RPC server must provide a valid certificate, else the connection will be closed.
	yes
	0

	localcert
	If verifypeer = 1, the file should contain the private key and the public certificate. This option was previously called privkey
	If verifypeer = 1, yes
	

	cacert
	Path to the file (PEM format) containing the public certificate of the Certificate Authority that produced the certificate defined by the localcert option. If verifypeer = 1, the certificate provided by the XML-RPC client will be validated by this CA.
	If verifypeer = 1, yes
	

	sessiontimeout
	Session timeout in seconds. When a user authenticates to the MMC agent, a user session in created. This session is destroyed automatically when no call is done before the session timeout is reach.
	Yes
	900

	multithreading
	Multi-threading support. If enabled, each incoming XML-RPC request is processed in a new thread.
	Yes
	1

	maxthreads
	If multi-threading is enabled, this setting defines the size of the pool of threads serving XML-RPC requests.
	Yes
	20

	sessiontimeout
	RPC Session timeout in seconds. If unset default to Twisted hardcoded 900 seconds.
	yes
	900

If host=127.0.0.1, the MMC agent will only listen to local incoming
connections. You can use host=0.0.0.0 to make it listen to all available
network interfaces.

To connect to the MMC agent, the client (for example the MMC web
interface) must do a HTTP Basic authentication, using the configured login
and password.

You must change the login and password in the configuration file,
because if you keep using the default configuration, anybody can connect
to your MMC agent. MMC agent issue a warning if you use the default login
and password.

Section « daemon »

This section defines some MMC agent daemon settings.

Available options for the “daemon” section

	Option name
	Description
	Optional
	Default value

	user
	System user under which the MMC agent service is running
	yes
	root

	group
	System group under which the MMC agent service is running
	yes
	root

	umask
	umask used by the MMC agent when creating files (log files for example)
	yes
	0777

	pidfile
	Path to the file containing the PID of the MMC agent
	No
	

If the MMC agent is configured to run as non-root, it drops its root
privileges to the defined user and group id using the “seteuid” system
call. This is done as soon as the configuration file is read.

Sections related to the Python logging module

See http://docs.python.org/lib/logging-config-fileformat.html.

In the default MMC agent configuration, two handlers are configured:

[handler_hand01]
class=FileHandler
level=INFO
formatter=form01
args=("/var/log/mmc/mmc-agent.log",)

[handler_hand02]
class=StreamHandler
level=DEBUG
args=(sys.stderr,)

The handler hand01 records all logs emitted by the MMC agent (and its
activated plugins) in the file /var/log/mmc/mmc-agent.log.

The handler hand02 is used by the MMC agent only when it starts to display
startup messages, then it is closed.

How to enable full debug in MMC agent

Just set level=DEBUG in hand01 handler (see previous section), and
restart the MMC agent.

All the remote function calls and responses are now recorded in MMC log file.

 MMC base plugin configuration file

MMC base plugin configuration file

This document explains the content of the MMC base plugin configuration file.

Introduction

The « base » plugin is the main plugin of the MMC Python API. It
features base operations like LDAP management (users, groups, etc), user
authentication and provisioning.

The plugin configuration file is
/etc/mmc/plugins/base.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a « [sectionname] »
header. In each section options can be defined like this «
option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Obfuscated password support in configuration files

All the passwords contained in MMC-related configuration files can
be obfuscated using a base64 encoding. This is not a security feature, but
at least somebody won’t be able to read accidentally a password.

To obfuscate a password, for example the word “secret”, you can use
the Python interpreter:

$ python -c 'print "secret".encode("base64")'
c2VjcmV0

The base64-encoded password is the word “c2VjcmV0”. Now to use it in
a configuration file:

[section]
password = {base64}c2VjcmV0

The {base64} prefix warns the configuration parser that the
following word is a base64-encoded word, and so needs to be decoded before
being used.

Configuration file sections

Here are all the base.ini available sections:

	Section name
	Description
	Optional

	ldap
	LDAP access definition
	no

	backup-tools
	Backup tools configuration
	no

	audit
	MMC audit framework configuration
	yes

	hooks
	Hooks for scripts that interacts with the MMC
	yes

	userdefault
	Attributes and Objectclass values that are added or deleted when adding a new user into the LDAP
	yes

	authentication
	Defines how a user is authenticated when logging into the MMC web interface. For example, another LDAP server can be use to perform the authentication.
	yes

	provisioning
	User accounts can be created or updated automatically when logging in to the MMC web interface.
	yes

	subscription
	This section is used to declare what has been subscribed, and to give some important information to the end user.
	yes

Section « ldap »

This section defines how the main LDAP is accessed, where are
located the users organization units, etc.

Available options for the “ldap” section

	Option name
	Description
	Optional
	Default value

	host (deprecated by ldapurl)
	IP address or hostname of the LDAP server
	no
	

	ldapurl
	LDAP URL to connect to the LDAP server, for example: ldap://127.0.0.1:389. If ldapurl starts with “ldaps://”, use LDAP over SSL on the LDAPS port. LDAPS is deprecated, and you should use StartTLS. If ldapverifypeer = demand, always use the server hostname instead of its IP address in the LDAP URL. This hostname must match the CN field of the server certificate.
	no
	

	network_timeout
	Network timeout in seconds for LDAP operations. No default timeout set.
	yes
	

	start_tls
	TLS connection parameters when LDAPS is not used. “off”: never use TLS. “start_tls”: use the LDAPv3 StartTLS extended operation (recommended).
	yes
	off

	ldapverifypeer
	If start_tls != off or LDAPS, specify check to perform on server certificate. “never”: don’t ask certificate. “demand”: request certificate. If none or bad certificate provided, stop the connection (recommended).
	yes
	demand

	cacertdir
	Client certicates to use (default are empty) for LDAPS or TLS connections. For example: /etc/ssl/certs
	yes
	

	cacert
	Certificate Authority file. For example: /etc/mmc/certs/demoCA/cacert.pem
	yes
	

	localcert
	Local SSL certificate file. For example: /etc/mmc/certs/client.cert
	yes
	

	localkey
	Local SSL public key. For example: /etc/mmc/certs/client.key
	yes
	

	ciphersuites
	Accepted ciphers from the LDAP server.
	yes
	TLSv1:!NULL

	ldapdebuglevel
	set this to 255 to debug LDAP connection problems. Details of all LDAP operations will be written to stdout
	yes
	0

	baseDN
	LDAP base Distinguished Name (DN)
	no
	

	rootName
	LDAP administrator DN
	no
	

	password
	LDAP administrator password
	no
	

	baseUsersDN
	LDAP organisational unit DN where the users are located
	no
	

	baseGroupsDN
	LDAP organisational unit DN where the groups are located
	no
	

	gpoDN
	LDAP organisational unit DN where the GPO are located
	yes
	ou=System,baseDN

	userHomeAction
	If set to 1, create and delete user directory when creating/deleting one
	no
	

	defaultUserGroup
	When creating an user, set this group as the primary user group
	yes
	

	skelDir
	Use the specified directory when creating a user home directory
	yes
	/etc/skel

	defaultHomeDir
	Use this directory as a base directory when creating a user without specifying a home directory. If the creater user is called “foo”, his/her homeDirectory will be “defaultHomeDir/foo”
	yes
	/home

	defaultShellEnable
	the default shell for enabled users
	no
	/bin/bash

	defaultShellDisable
	the default shell for disabled users
	no
	/bin/false

	authorizedHomeDir
	a list of directory where user home directory can be put
	yes
	defaultHomeDir

	uidStart
	starting uid number for user accounts
	yes
	10000

	gidStart
	starting gid number for groups
	yes
	10000

	logViewModule
	enable/disable the logview module
	yes
	no

	logfile
	LDAP log file path
	no
	

	passwordscheme
	LDAP user password scheme. Possible values are “ssha”, “crypt” and “passmod”. “passmod” uses the LDAP Password Modify Extended Operations to change password. The password encryption is done by the LDAP server.
	no
	passmod

Section « backup-tools »

This section defines where are located the backup tools. The backup
tools are used when backuping a home directory or a SAMBA share from the
MMC.

Available options for the “backup-tools” section:

	Option name
	Description
	Optional

	path
	Where are located the executable needed by the backup tools
	no

	destpath
	Where the backup are located once done
	no

Section « audit »

This section defines the audit framework behaviour. By default the
audit framework is disabled.

Available options for the “audit” section:

	Option name
	Description
	Optional

	method
	Method used to record all audit data. Only the “database” method is supported.
	no

	dbhost
	Host to connect to the SGBD that stores the audit database
	no

	dbdriver
	Database driver to use. “mysql” and “postgres” drivers are supported.
	no

	dbport
	Port to connect to the SGBD that stores the audit database.
	no

	dbuser
	User login to connect to the SGBD that stores the audit database.
	no

	dbpassword
	User password to connect to the SGBD that stores the audit database.
	no

	dbname
	Name of the audit database.
	no

Section « hooks »

The hooks system allow you to run external script when doing some
operations with the MMC.

The script will be run as root user, with as only argument the path
to a temporary file containing the full LDIF export of the LDAP user.

For the « adduser » and « changeuserpassword » hooks, the LDIF file will
contain the userPassword attribute in cleartext.

For the « usertoken » hook the userPassword attribute will contain the
authentication token for the user. This token is valid for 15 minutes. Using
this token a link can be send to the user (email, sms...) so that he can login
in the MMC interface and change his password trough the “Reset password page”.
The link is in the form: http://SERVER/mmc/token.php?token=<TOKEN>.

The executable bit must be set on the script to run. The temporary
LDIF file is removed once the script has been executed.

Available options for the “hooks” section:

	Option name
	Description
	Optional

	adduser
	path to the script launched when a user has been added into the LDAP directory
	yes

	changeuserpassword
	path to the script launched when a user has been changed into the LDAP directory
	yes

	deluser
	path to the script launched when a user is going to be removed from the LDAP directory
	yes

	usertoken
	path to the script launched when an authentication token has been created for a user
	yes

Here is a hook example written in BASH for « adduser »:

#!/bin/sh
Get the uid of the new user
VALUE=`cat $1 | grep ^uid: | sed "s/uid: //"`
Log new user event
echo "New user $VALUE created" >> /var/log/newuser.log
exit 0

The same hook, written in Python:

#!/usr/bin/env python
import sys
ldif is a Python package of the python-ldap extension
import ldif
LOGFILE = "/var/log/newuser.log"

class MyParser(ldif.LDIFParser):

 def handle(self, dn, entry):
 uid = entry["uid"][0]
 f = file(LOGFILE, "a")
 f.write("New user %s created\\n" % uid)
 f.close()

parser = MyParser(file(sys.argv[1]))
parser.parse()

Section « userdefault »

This section allows to set default attributes to a user, or remove
them, only at user creation.

Each option of this section is corresponding to the attribute you
want to act on.

If you want to remove the « displayName » attribute of each newly
added user:

[userdefault]
displayName = DELETE

Substitution is done on the value of an option if a string between
‘%’ is found. For example, if you want that all new user have a default
email address containing their uid:

[userdefault]
mail = %uid%@mandriva.com

If you want to add a value to a multi-valuated LDAP attribute, do
this:

[userdefault]
objectClass = +corporateUser

Since version 1.1.0, you can add modifiers that interact with the
substitution. This modifiers are put between square bracket at the
beginning os the string to substitute.

Available modifiers for substitution

	modifier character
	Description

	/
	Remove diacritics (accents mark) from the substitution string

	_
	Set substitution string to lower case

	|
	Set substitution string to upper case

For example, you want that all new created users have a default mail
address made this way: « firstname.lastname@mandriva.com ». But your user
firstname/lastname have accent marks, that are forbidden for email
address. You do it like this:

[userdefault]
mail = [_/]%givenName%.%sn%@mandriva.com

User authentication

The default configuration authenticates users using the LDAP
directory specified in the [ldap] section.

But it is also possible to set up authentication using an external
LDAP server.

Section « authentication »

This optional section tells the MMC agent authentication manager
how to authenticate a user. Each Python plugin can register
“authenticator” objects to the authentication manager, that then can be
used to authenticate users.

The authentication manager tries each authenticator with the
supplied login and password until one successfully authenticate the
user.

Please note that the user won’t be able to log in to the MMC web
interface if she/he doesn’t have an account in the LDAP directory
configured in the [ldap] section of the base plugin. The provisioning
system will allow you to automatically create this account.

The base plugin registers two authenticators:

	baseldap: this authenticator uses the LDAP directory
configured in the [ldap] section of the base plugin to authenticate
the user,

	externalldap: this authenticator uses an external LDAP
directory to authenticate the user.

Available options for the “authentication” section

	Option name
	Description
	Optional
	Default value

	method
	space-separated list of authenticators to try to authenticate a user
	yes
	baseldap

The default configuration is:

[authentication]
method = baseldap

authentication_baseldap

This section defines some configuration directives for the
baseldap authenticator.

Available options for the “authentication_baseldap” section:

	Option name
	Description
	Optional
	Default value

	authonly
	space-separated list of login that will be authentified using this authenticator. Others will be skipped.
	yes
	

For example, to make the “baseldap” authenticator only
authenticate the virtual MMC “root” user:

[authentication_baseldap]
authonly = root

authentication_externalldap

This section defines some configuration directives for the
baseldap authenticator.

Available options for the “authentication_externalldap” section:

	Option name
	Description
	Optional
	Default value

	exclude
	space-separated list of login that won’t be authenticated using this authenticator.
	yes
	

	authonly
	If set, only the logins from the specified space-separated list of login will be authenticated using this authenticator, other login will be skipped.
	yes
	

	mandatory
	Set whether this authenticator is mandatory. If it is mandatory and can’t be validated during the mmc-agent activation phase, the mmc-agent exits with an error.
	yes
	True

	network_timeout
	LDAP connection timeout in seconds. If the LDAP connection failed after this timeout, we try the next LDAP server in the list or give up if it the last.
	yes
	

	ldapurl
	LDAP URL of the LDAP directory to connect to to authenticate user. You can specify multiple LDAP URLs, separated by spaces. Each LDAP server is tried until one successfully accepts a connection.
	no
	

	suffix
	DN of the LDAP directory where to search users
	no
	

	bindname
	DN of the LDAP directory account that must be used to bind to the LDAP directory and to perform the user search. If empty, an anonymous bind is done.
	no
	

	bindpasswd
	Password of the LDAP directory account given by the bindname option. Not needed if bindname is empty.
	no
	

	filter
	LDAP filter to use to search the user in the LDAP directory
	yes
	objectClass=*

	attr
	Name of the LDAP attribute that will allow to match a user entry with a LDAP search
	no
	

For example, to authenticate a user using an Active
Directory:

[authentication_externalldap]
exclude = root
ldapurl = ldap://192.168.0.1:389
suffix = cn=Users,dc=adroot,dc=com
bindname = cn=Administrator, cn=Users, dc=adroot, dc=com
bindpasswd = s3cr3t
filter = objectClass=*
attr = cn

User provisioning

This feature allows to automatically create a user account if it
does not already exist in the LDAP directory configured in the [ldap]
section of the base plugin.

User provisioning is needed for example if an external LDAP is used
to authenticate users. The users won’t be able to log in to the MMC web
interface even if their login and password are rights, because the local
LDAP doesn’t store thir accounts.

Section « provisioning »

This optional section tells the MMC agent provisioning manager how
to provision a user account. Each Python plugin can register
“provisioner” objects to the provisioning manager, that then can be used
to provision users.

When a user logs in to the MMC web interface, the authenticator
manager authenticates this user. If the authentication succeed, then the
provisioning manager runs each provisioner.

The authenticator object that successfully authenticates the user
must pass to the provisioning manager the user informations, so that the
provisioners have data to create or update the user entry.

Available options for the “provisioning” section

	Option name
	Description
	Optional
	Default value

	method
	space-separated list of provisioners
	yes
	

For example, this configuration tells to use the “externalldap”
provisioner to create the user account:

[provisioning]
method = externalldap

provisioning_external

This section defines some configuration directives for the
externalldap authenticator.

Available options for the “authentication_externalldap” section:

	Option name
	Description
	Optional
	Default value

	exclude
	space-separated list of login that won’t be provisioned by this provisioner.
	yes
	

	ldap_uid
	name of the external LDAP field that is corresponding to the local uid field. The uid LDAP attribute is the user login.
	no
	

	ldap_givenName
	name of the external LDAP field that is corresponding to the local givenName field
	no
	

	ldap_sn
	name of the external LDAP field that is corresponding to the local sn (SurName) field
	no
	

	profile_attr
	The ACLs fields of the user that logs in can be filled according to the value of an attribute from the external LDAP. This option should contain the field name.
	yes
	

	profile_acl_<profilename>
	The ACLs field of the user that logs in with the profile <profilename>.
	yes
	

	profile_group_mapping
	If enabled, users with the same profile will be put in the same users group.
	yes
	False

	profile_group_prefix
	If profile_group_mapping is enabled, the created groups name will be prefixed with the given string.
	yes
	

To create a user account, the MMC agent needs the user’s login,
password, given name and surname. That’s why the ldap_uid`È,
``ldap_givenName and ldap_sn options are mandatory.

Here is a simple example of an authenticators and provisioners
chain that authenticates users using an Active Directory, and create
accounts:

[authentication]
method = baseldap externalldap

[authentication_externalldap]
exclude = root
ldapurl = ldap://192.168.0.1:389
suffix = cn=Users,dc=adroot,dc=com
bindname = cn=Administrator, cn=Users, dc=adroot, dc=com
bindpasswd = s3cr3t
filter = objectClass=*
attr = cn

[provisioning]
method = externalldap

[provisioning_externalldap]
exclude = root
ldap_uid = cn
ldap_givenName = sn
ldap_sn = sn

Subscription informations

This section contains all the information needed when the version is
not a community one. It allow for example to send mail to the
administrator directly from the GUI when something went wrong.

Available options for the “subscription” section:

	Option name
	Description
	Optional
	Default value

	product_name
	A combination of “MDS” and “Pulse 2” to describe the product
	yes
	MDS

	vendor_name
	The vendor’s name
	yes
	Mandriva

	vendor_mail
	The vendor’s email address
	yes
	sales@mandriva.com

	customer_name
	The customer’s name
	yes
	

	customer_mail
	The customer’s email address
	yes
	

	comment
	A comment on the customer
	yes
	

	users
	The number of users included in the subscription. 0 is for infinite.
	yes
	0

	computers
	The number of computers included in the subscription. 0 is for infinite.
	yes
	0

	support_mail
	The support’s email address
	yes
	customer@customercare.mandriva.com

	support_phone
	The support’s phone number
	yes
	0810 LINBOX

	support_comment
	A comment about the support
	yes
	

 MMC ppolicy (Password Policy) plugin configuration file

MMC ppolicy (Password Policy) plugin configuration file

This document explains the content of the MMC ppolicy
(Password Policy) plugin configuration file

Introduction

The « ppolicy » plugin allows to set the default password
policy to apply to all users contained into the LDAP directory,
and to set a specific password policy to a user.

This plugin is disabled by default. Please be sure to understand
how works password policy for LDAP before enabling it. Here are
some related documentations:

	Internet-Draft:
Password Policy for LDAP Directories [http://tools.ietf.org/html/draft-behera-ldap-password-policy]

	Managing
Password Policies in the Directory [http://www.symas.com/blog/?page_id=66]

The plugin configuration file is /etc/mmc/plugins/ppolicy.ini.

Like all MMC related configuration file, its file format is INI
style. The file is made of sections, each one starting with a «
[sectionname] » header. In each section options can be defined
like this « option = value ».

For example:

[section1]
option1 = 1
option2 = 2

[section2]
option1 = foo
option2 = plop

Configuration file sections

Here are all the ppolicy.ini available sections:

	Section name
	Description
	Optional

	main
	global ppolicy plugin configuration
	no

	ppolicy
	
	yes

	ppolicyattributes
	
	yes

Section « main »

This sections defines the global options of the mail plugin

	Option name
	Description
	Optional
	Default value

	disable
	Is this plugin disabled ?
	Yes
	1

Section « ppolicy »

This section defines the LDAP location of the password policies.

	Option name
	Description
	Optional
	Default value

	ppolicyDN
	DN of the LDAP OU where the default password policy will be stored
	No
	

	ppolicyDefault
	Name of the default password policy
	No
	

Section « ppolicyattributes »

This section defines the attributes and the values of the
default LDAP password policy. The default policy will be initialized
when the MMC agent starts if the default policy doesn’t exist in
the LDAP directory.

Of course the attribute name must match the LDAP password policy
schema. Here is the default configuration we ship for this section:

This options are used only once to create the default password
policy entry
into the LDAP
[ppolicyattributes]
pwdAttribute = userPassword
pwdLockout = True
pwdMaxFailure = 5
pwdLockoutDuration = 900
Password can be change if it not 7 days old
pwdMinAge = 25200
Password expiration is 42 days
pwdMaxAge = 3628800
pwdMinLength = 8
pwdInHistory = 5
pwdMustChange = True
To check password quality
pwdCheckModule = mmc-check-password.so
pwdCheckQuality = 2

 MMC web configuration file

MMC web configuration file

This document explains the content of the MMC web configuration file

Introduction

The MMC web interface communicates with MMC agents to manage LDAP directories,
services and ressources.

Its configuration file is /etc/mmc/mmc.ini. This file must be readable
only by the Apache web server, as it contains the login and password required
to connect to MMC agents.

Like all MMC related configuration files, its file format is INI style.
The file is made of sections, each one starting with a «

 Using MMC

Using MMC

Controlling mmc-agent

To start and stop the MMC agent, use the /etc/init.d/mmc-agent script:

/etc/init.d/mmc-agent stop
/etc/init.d/mmc-agent start

The MMC agent must be started to use the MMC web interface.

When the MMC agent is started, all startup log messages are written to stderr
and /var/log/mmc/mmc-agent.log.

Here is what is written (for example) if there is no error:

/etc/init.d/mmc-agent start
Starting Mandriva Management Console XML-RPC Agent: mmc-agent starting...
Plugin base loaded, API version: 4:0:0 build(82)
Plugin mail loaded, API version: 3:0:1 build(78)
Plugin samba loaded, API version: 3:0:2 build(78)
Plugin proxy loaded, API version: 1:0:0 build(78)
Daemon PID 13943
done.

If there is an error:

/etc/init.d/mmc-agent start
Starting Mandriva Management Console XML-RPC Agent: mmc-agent starting...
Can't bind to LDAP: invalid credentials.
Plugin base not loaded.
MMC agent can't run without the base plugin. Exiting.
failed.

The base plugin can’t bind to LDAP, because the credentials we used to connect
to the LDAP server are wrong. As the base plugin must be activated to use the
MMC agent, the MMC agent exits.

/etc/init.d/mmc-agent start
Starting Mandriva Management Console XML-RPC Agent: mmc-agent starting...
Plugin base loaded, API version: 4:0:0 build(82)
Plugin mail loaded, API version: 3:0:1 build(78)
Samba schema are not included in LDAP directory
Plugin samba not loaded.
Plugin proxy loaded, API version: 1:0:0 build(78)
Daemon PID 14010
done.

In this example, the SAMBA schema has not been detected in the LDAP directory,
so the SAMBA plugin is not started. But this plugin is not mandatory,
so the MMC agent doesn’t exit.

Administrator login to the MMC web interface

You can always login to the MMC web interface using the login «

 Mandriva Directory Server

Mandriva Directory Server

	Introduction

	Mail plugin
	Installation

	LDAP directory configuration

	Postfix/LDAP configuration

	NSS LDAP configuration

	MMC «

 Introduction

Introduction

The Mandriva Directory Server (MDS) provides different modules running on
top of the Mandriva Management Console.

MDS is composed of the following plugins:

	samba: The «

 Mail plugin

Mail plugin

Installation

Install the packages python-mmc-mail and mmc-web-mail.

LDAP directory configuration

You need to import our mail schema into the LDAP directory.
The schema file is provided by the python-mmc-base package in
/usr/share/doc/mmc/contrib/mail/mail.schema.

Once this schema is imported, you will be able to manage mail delivery
attributes thanks to the MMC.

Note

To include the schema on Debian:

mmc-add-schema /usr/share/doc/mmc/contrib/mail/mail.schema
/etc/ldap/schema/

Postfix/LDAP configuration

Example Postfix configuration files are included into the mds tarball and
packages in /usr/share/doc/mmc/contrib/mail/postfix/.

We provide two kinds of configuration:

	no-virtual-domain: the mail domain is fixed in the «

 Network plugin

Network plugin

Introduction

This plugin allows to store in a LDAP directory:

	DNS zones declarations and related DNS records as needed for a standard LAN;

	DHCP server configuration with DHCP subnet, dynamic pool and static host
declarations.

The MMC web interface allows to easily manage the DNS and DHCP services.

The network plugin relies on patched version of ISC DHCP 3 and ISC BIND 9:

	ISC BIND: a patch featuring a LDAP sdb backend must be applied to your BIND
installation. With this patch BIND will be able to read DNS zone declarations
from a LDAP directory. This patch is available there [http://www.venaas.no/ldap/bind-sdb/].
The stable release of this patch (version 1.0) works fine.

	ISC DHCP: the patch on this page [http://home.ntelos.net/~masneyb/] allows
to store into a LDAP the DHCP service configuration (instead of /etc/dhcp3/dhcpd.conf).

Installation

Install the packages python-mmc-network and mmc-web-network.

Debian packages for patched versions of BIND

We provide Debian Lenny packages for the LDAP patched version of BIND.
This packages work on Squeeze too.

Configure your APT repository as in the Debian packages section.
And add in /etc/apt/preferences.d/pining :

Package: *
Pin: origin mds.mandriva.org
Pin-Priority: 1001

Then install the packages :

apt-get update
apt-get install bind9 isc-dhcp-server-ldap

DNS service configuration (ISC BIND)

When managing the DNS zones, the MMC agent will create files into the BIND
configuration directory (located in /etc/bind/). These files must be
included in the main BIND configuration file so that the corresponding zones
are loaded from the LDAP directory.

All the DNS zones are defined in the file named.conf.ldap. This file
must be included in the main BIND configuration file named.conf.
Adding this line at the end of BIND named.conf should be sufficient:

include "/etc/bind/named.conf.ldap";

An example of named.conf filename for Debian based system is available
at /usr/share/doc/mmc/contrib/network/named.conf.

Note

BIND and OpenLDAP services startup order

On most distributions, BIND is started before OpenLDAP during the boot
sequence. If BIND/LDAP is used, BIND won’t be able to connect to the LDAP
directory, and won’t start. So you may need to tweak your system boot scripts
to fix this. The following command line should work on Debian based systems:

update-rc.d -f slapd remove && update-rc.d slapd start 14 2 3 4 5 . stop 86 0 1 6 .

DHCP service configuration (ISC DHCP)

The DHCP server needs to know how to load its configuration from LDAP.
Here is a typical /etc/dhcp/dhcpd.conf:

ldap-server "localhost";
ldap-port 389;
ldap-username "cn=admin, dc=mandriva, dc=com";
ldap-password "secret";
ldap-base-dn "dc=mandriva, dc=com";
ldap-method dynamic;
ldap-debug-file "/var/log/dhcp-ldap-startup.log";

The dhcpd service will try to find an LDAP entry for the machine hostname. If the entry name is different, you can set in dhcpd.conf:

ldap-dhcp-server-cn "DHCP_SERVER_NAME";

An example of dhcpd.conf filename is available in the directory /usr/share/doc/mmc/contrib/network/.

LDAP Schemas

Two new LDAP schemas must be imported into your LDAP directory: dnszone.schema and dhcp.schema.

Both are available in the directory /usr/share/doc/mmc/contrib/network/.

To speed up LDAP search, you can index these attributes: zoneName, relativeDomainName, dhcpHWAddress, dhcpClassData.

For OpenLDAP slapd.conf configuration file, you will add:

index zoneName,relativeDomainName eq
index dhcpHWAddress,dhcpClassData eq

MMC « network » plugin configuration

For a full description of the MMC network plugin configuration file see
MMC network plugin configuration file.

You should verify that the paths to directories and init scripts are right.

MMC « network » plugin initialization

For the DHCP service only, the MMC network plugin needs to create into the LDAP directory two objects:

	the container called “DHCP config” (objectClass dhcpService), where all the DHCP service configuration will be stored

	the primary server (objectClass dhcpServer) that links to the DHCP service configuration.
The hostname of the machine running the MMC network plugin will be use to name this entry.

The first start of the MMC network plugin should look like:

...
Created OU ou=DHCP,dc=mandriva,dc=com
Created DHCP config object
The server 'your_server_hostname' has been set as the primary DHCP server
Plugin network loaded ...
...

DHCP failover configuration

The DHCP failover can be done directly from the MMC interface on the page
“Network -> Network services management”.

The primary DHCP server name is by default the hostname of the server where
the mmc-agent is running. You can override this by setting the “hostname” option in
/etc/mmc/plugins/network.ini

To configure DHCP failover you need at least the name of your secondary DHCP server
and the IP addresses of the two DHCP servers. In expert mode you can set any parameter of
the failover configuration.

The secondary ISC dhcpd configuration is almost the same as the primary DHCP:

ldap-server "LDAP_SERVER_IP";
ldap-port 389;
ldap-username "cn=admin, dc=mandriva, dc=com";
ldap-password "secret";
ldap-base-dn "dc=mandriva, dc=com";
ldap-dhcp-server-cn "SECONDARY_DHCP_SERVER_NAME";
ldap-method dynamic;
ldap-debug-file "/var/log/dhcp-ldap-startup.log";

 SAMBA plugin

SAMBA plugin

This document explains how to install the SAMBA plugin for MMC and its
related configuration.

Installation

Install the packages python-mmc-samba, mmc-web-samba and samba.

SAMBA configuration for MMC

This section explains how to configure SAMBA with a LDAP directory so that it
works with the MMC. Basically, you need to do a classic SAMBA/LDAP setup,
SAMBA running as a PDC.

Note

Configuration files

A slapd.conf for OpenLDAP and a smb.conf for SAMBA can
be found in /usr/share/doc/mmc/contrib/samba.

Please use these files as templates for your own configuration.

If you aren’t familiar with SAMBA/LDAP installation, read the
SAMBA LDAP HOWTO [http://download.gna.org/smbldap-tools/docs/samba-ldap-howto/index.html].
SAMBA LDAP setup is not easy.

LDAP directory configuration

You need to import the SAMBA schema into the LDAP directory.
The schema file is provided by the python-mmc-samba package in
/usr/share/doc/mmc/contrib/samba/samba.schema. But you can
also use the schema provided by the SAMBA project.

SAMBA configuration

Stop samba before modifying its configuration:

/etc/init.d/samba stop
Or according to your distribution:
/etc/init.d/smb stop

In /etc/samba/smb.conf, you need to modify the «

 Shorewall plugin

Shorewall plugin

Installation

Install the packages python-mmc-shorewall and mmc-web-shorewall.

MMC « shorewall » plugin

THe shorewall plugin will manage the files in /etc/shorewall. The plugin is
designed to manage internal and external interfaces. An external interface is
generally connected to an insecure network (Internet), and internal interface
is connected to a known/controlled network.

Typically if your server is installed in a datacenter and have a public
interfaces to the Internet, they are external interfaces. If your server is in
your local network you have only internal interfaces. A server acting as
a gateway has generally one public interface and one interface interface.

Once your interfaces are defined as ‘internal’ or ‘external’ all the firewall
configuration can be done from the MMC interface. Depending on your interfaces
configuration you will be able to access more or less features. For example, if
you have one internal and one external interface you will be able to create
a NAT rule for your internal network.

Example of the shorewall plugin with two ‘internal’ interfaces:

[image: ../../_images/shorewall.png]

MMC «

 Squid plugin

Squid plugin

Installation

Install the packages python-mmc-squid and mmc-web-squid.

LDAP directory configuration

Two groups will be created automatically in the LDAP tree when the mmc-agent
starts with the squid plugin enabled:

	InternetMaster: the group with total privilegies to access any site and downloads at any time

	InternetFiltered: is the group with Internet and extensions filtred by a list of keywords and domains

The group names and their description can be changed in the configuration file of the plugin: MMC squid plugin configuration file.

Squid configuration

Please use the provided squid configuration available in /usr/share/doc/mmc/contrib/squid/.

The configuration of the squid.conf file was customized to provide LDAP authentication for the users.
Copy the configuration file to /etc/squid or /etc/squid3/ (on Debian).

 SSH public keys plugin

SSH public keys plugin

Installation

Install the packages python-mmc-sshlpk and mmc-web-sshlpk.

LDAP directory configuration

You need to import the sshlpk schema into the LDAP directory.
The schema file is provided by the python-mmc-sshlpk package in
/usr/share/doc/mmc/contrib/sshlpk/openssh-lpk.schema.

Once this schema is imported, you will be able to manage ssh
attributes thanks to the MMC.

Note

On Debian, run:

mmc-add-schema /usr/share/doc/mmc/contrib/sshlpk/openssh-lpk.schema /etc/ldap/schema

MMC «

 Userquota plugin

